
MATLAB® Compiler™
User's Guide

R2022a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ User's Guide
© COPYRIGHT 1995–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)
March 2010 Online only Revised for Version 4.13 (Release 2010a)
September 2010 Online only Revised for Version 4.14 (Release 2010b)
April 2011 Online only Revised for Version 4.15 (Release 2011a)
September 2011 Online only Revised for Version 4.16 (Release 2011b)
March 2012 Online only Revised for Version 4.17 (Release 2012a)
September 2012 Online only Revised for Version 4.18 (Release 2012b)
March 2013 Online only Revised for Version 4.18.1 (Release 2013a)
September 2013 Online only Revised for Version 5.0 (Release 2013b)
March 2014 Online only Revised for Version 5.1 (Release 2014a)
October 2014 Online only Revised for Version 5.2 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)
September 2017 Online only Revised for Version 6.5 (Release R2017b)
March 2018 Online only Revised for Version 6.6 (Release R2018a)
September 2018 Online only Revised for Version 7.0 (Release R2018b)
March 2019 Online only Revised for Version 7.0.1 (Release R2019a)
September 2019 Online only Revised for Version 7.1 (Release R2019b)
March 2020 Online only Revised for Version 8.0 (Release R2020a)
September 2020 Online only Revised for Version 8.1 (Release R2020b)
March 2021 Online only Revised for Version 8.2 (Release R2021a)
September 2021 Online only Revised for Version 8.3 (Release R2021b)
March 2022 Online only Revised for Version 8.4 (Release R2022a)





Getting Started
1

MATLAB Compiler Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Appropriate Tasks for MATLAB Compiler Products . . . . . . . . . . . . . . . . . . 1-3

Create Standalone Application from MATLAB . . . . . . . . . . . . . . . . . . . . . . 1-5
Create Function in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Create Standalone Application Using Application Compiler App . . . . . . . . 1-6
Create Standalone Application Using compiler.build.standaloneApplication

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Create Standalone Application Installer Using compiler.package.installer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Install Standalone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Run Standalone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

MATLAB Runtime Additional Info
2

Differences Between MATLAB and MATLAB Runtime . . . . . . . . . . . . . . . . 2-2

Performance Considerations and MATLAB Runtime . . . . . . . . . . . . . . . . . 2-3

Deploying Standalone Applications
3

Standalone Applications and Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Run Standalone Applications that Use Arguments . . . . . . . . . . . . . . . . . . . 3-2

Use Parallel Computing Toolbox in Deployed Applications . . . . . . . . . . . . 3-5
Export Cluster Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Link to Parallel Computing Toolbox Profile Within Your Code . . . . . . . . . . 3-5
Pass Parallel Computing Toolbox Profile at Run Time . . . . . . . . . . . . . . . . 3-6
Switch Between Cluster Profiles in Deployed Applications . . . . . . . . . . . . 3-6
Sample C Code to Load Cluster Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

v

Contents



Integrate Application with Mac OS X Finder . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Installing the Mac Application Launcher Preference Pane . . . . . . . . . . . . . 3-8
Configuring the Installation Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Files Generated After Packaging MATLAB Functions . . . . . . . . . . . . . . . 3-12
for_redistribution Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
for_redistribution_files_only Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
for_testing Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Customizing a Compiler Project
4

Customize an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Customize the Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Determine Data Type of Command-Line Input (For Packaging Standalone

Applications Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Manage Required Files in Compiler Project . . . . . . . . . . . . . . . . . . . . . . . 4-4
Sample Driver File Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Specify Files to Install with Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Additional Runtime Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Manage Support Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Using a Compiler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Using the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

MATLAB Code Deployment
5

How Does MATLAB Deploy Functions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Dependency Analysis Using MATLAB Compiler . . . . . . . . . . . . . . . . . . . . . 5-3
Function Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Data File Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Exclude Files From Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

MEX-Files, DLLs, or Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Deployable Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Additional Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Write Deployable MATLAB Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Packaged Applications Do Not Process MATLAB Files at Run Time . . . . . . 5-9
Do Not Rely on Changing Directory or Path to Control the Execution of

MATLAB Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Use isdeployed Functions To Execute Deployment-Specific Code Paths . . 5-10
Gradually Refactor Applications That Depend on Noncompilable Functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

vi Contents



Do Not Create or Use Nonconstant Static State Variables . . . . . . . . . . . . 5-10
Get Proper Licenses for Toolbox Functionality You Want to Deploy . . . . . 5-11

Calling Shared Libraries in Deployed Applications . . . . . . . . . . . . . . . . . 5-12

MATLAB Data Files in Compiled Applications . . . . . . . . . . . . . . . . . . . . . 5-13
Explicitly Including MATLAB Data files Using the %#function Pragma . . 5-13
Load and Save Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

Standalone Application Creation
6

Dependency Analysis Function and User Interaction with the Compilation
Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

addpath and rmpath in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Passing -I <directory> on the Command Line . . . . . . . . . . . . . . . . . . . . . . 6-2
Passing -N and -p <directory> on the Command Line . . . . . . . . . . . . . . . . 6-2

Deployment Process
7

About the MATLAB Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
How is the MATLAB Runtime Different from MATLAB? . . . . . . . . . . . . . . . 7-2
Performance Considerations and the MATLAB Runtime . . . . . . . . . . . . . . 7-2

Install and Configure MATLAB Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Download MATLAB Runtime Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Install MATLAB Runtime Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Install MATLAB Runtime Noninteractively . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Install MATLAB Runtime without Administrator Rights . . . . . . . . . . . . . . . 7-6
Install Multiple MATLAB Runtime Versions on Single Machine . . . . . . . . . 7-6
Install MATLAB and MATLAB Runtime on Same Machine . . . . . . . . . . . . . 7-7
Uninstall MATLAB Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Run Applications Using a Network Installation of MATLAB Runtime . . . 7-9

MATLAB Runtime on Big Data Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Cloudera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Apache Ambari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Azure HDInsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

Install Deployed Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Install Application Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Install Application Noninteractively . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13

vii



Work with the MATLAB Runtime
8

MATLAB Runtime Startup Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Set MATLAB Runtime Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Using MATLAB Runtime User Data Interface . . . . . . . . . . . . . . . . . . . . . . . 8-4
MATLAB Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Set and Retrieve MATLAB Runtime Data for Shared Libraries . . . . . . . . . . 8-4

Display MATLAB Runtime Initialization Messages . . . . . . . . . . . . . . . . . . . 8-6
Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6

Distributing Code to an End User
9

Distribute MATLAB Code Using the MATLAB Runtime . . . . . . . . . . . . . . . 9-2
MATLAB Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Compiler Commands
10

Compiler Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Deploying Applications That Call the Java Native Libraries . . . . . . . . . . . 10-2
Using the VER Function in a Compiled MATLAB Application . . . . . . . . . . 10-2

Standalone Applications
11

Deploying Standalone Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Compiling the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Testing the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Deploying the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4

Troubleshooting
12

Testing Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

Investigate Deployed Application Failures . . . . . . . . . . . . . . . . . . . . . . . . 12-4

viii Contents



Limitations and Restrictions
13

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Packaging MATLAB and Toolboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Fixing Callback Problems: Missing Functions . . . . . . . . . . . . . . . . . . . . . 13-2
Finding Missing Functions in a MATLAB File . . . . . . . . . . . . . . . . . . . . . 13-4
Suppressing Warnings on the UNIX System . . . . . . . . . . . . . . . . . . . . . . 13-4
Cannot Use Graphics with the -nojvm Option . . . . . . . . . . . . . . . . . . . . . 13-4
Cannot Create the Output File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
No MATLAB File Help for Packaged Functions . . . . . . . . . . . . . . . . . . . . 13-4
No MATLAB Runtime Versioning on Mac OS X . . . . . . . . . . . . . . . . . . . . 13-5
Older Neural Networks Not Deployable with MATLAB Compiler . . . . . . . 13-5
Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Packaging a Function with which Does Not Search Current Working Folder

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Restrictions on Using C++ SetData to Dynamically Resize an mwArray

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Accepted File Types for Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6

Functions Not Supported for Compilation by MATLAB Compiler and
MATLAB Compiler SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7

Package to Docker
14

Package MATLAB Standalone Applications into Docker Images . . . . . . . 14-2
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
Create Function in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
Create Standalone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Package Standalone Application into Docker Image . . . . . . . . . . . . . . . . 14-3
Test Docker Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Share Docker Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5

Reference Information
15

Set MATLAB Runtime Path for Deployment . . . . . . . . . . . . . . . . . . . . . . . 15-2
Environment Variables and MATLAB Runtime Directories . . . . . . . . . . . . 15-2
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3
Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3
macOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4
Set Path Permanently on UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

MATLAB Compiler Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Using MATLAB Compiler Licenses for Development . . . . . . . . . . . . . . . . 15-6

ix



Deployment Product Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7

Functions
16

MATLAB Compiler Quick Reference
A

mcc Command Arguments Listed Alphabetically . . . . . . . . . . . . . . . . . . . . A-2
Packaging Log and Output Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

mcc Command Line Arguments Grouped by Task . . . . . . . . . . . . . . . . . . . A-5

Apps
17

x Contents



Getting Started

• “MATLAB Compiler Product Description” on page 1-2
• “Appropriate Tasks for MATLAB Compiler Products” on page 1-3
• “Create Standalone Application from MATLAB” on page 1-5

1



MATLAB Compiler Product Description
Build standalone executables and web apps from MATLAB programs

MATLAB Compiler enables you to share MATLAB programs as standalone applications and web apps.
With MATLAB Compiler you can also package and deploy MATLAB programs as MapReduce and
Spark™ big data applications and as Microsoft® Excel® add-ins. End users can run your applications
royalty-free using MATLAB Runtime.

To provide browser-based access to your MATLAB web apps, you can host them using the
development version of MATLAB Web App Server included with MATLAB Compiler. MATLAB
programs can be packaged into software components for integration with other programming
languages (with MATLAB Compiler SDK™). Large-scale deployment to enterprise systems is
supported through MATLAB Production Server™.

1 Getting Started

1-2



Appropriate Tasks for MATLAB Compiler Products
MATLAB Compiler generates standalone applications and Excel add-ins. MATLAB Compiler SDK
generates C/C++ shared libraries, deployable archives for use with MATLAB Production Server,
Java® packages, .NET assemblies, and COM components.

While MATLAB Compiler and MATLAB Compiler SDK let you run your MATLAB application outside
the MATLAB environment, it is not appropriate for all external tasks you may want to perform. Some
tasks require other products or MATLAB external interfaces. Use the following table to determine if
MATLAB Compiler or MATLAB Compiler SDK is appropriate to your needs.

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Package
MATLAB
applications for
deployment to
users who do
not have
MATLAB

■     

Package
MATLAB
applications for
deployment to
MATLAB
Production
Server

■     

Build non-
MATLAB
applications
that include
MATLAB
functions

■     

Generate
readable and
portable C/C++
code from
MATLAB code

 ■    

Generate MEX
functions from
MATLAB code
for code
verification and
acceleration.

 ■    

Integrate
MATLAB code
into Simulink

  ■   

 Appropriate Tasks for MATLAB Compiler Products

1-3



Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Generate
hardware
description
language (HDL)
from MATLAB
code

   ■  

Integrate
custom C code
into MATLAB
with MEX files

    ■

Call MATLAB
from C and
Fortran
programs

    ■

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB Coder Simulink HDL Coder MATLAB
External
Interfaces

Note Components generated by MATLAB Compiler and MATLAB Compiler SDK cannot be used in
the MATLAB environment.

1 Getting Started

1-4



Create Standalone Application from MATLAB
Supported Platform: Windows®, Linux®, macOS

This example shows how to use MATLAB Compiler to package the pre-written function that prints a
magic square to the command prompt. The target system does not require a licensed copy of
MATLAB to run the application.

You can create standalone applications using the following options:

Option Purpose
Application Compiler Use this app to produce an installer that installs both the

standalone application and all required dependencies on a
target system.

compiler.build.standaloneAppl
ication

Use this function to produce a standalone application that
does not include MATLAB Runtime or an installer. To
produce a standalone application that does not launch a
Windows command shell, use
compiler.build.standaloneWindowsApplication.

compiler.package.installer Use this function to produce an installer that installs both
the standalone application and all required dependencies on
a target system.

mcc Use this function to produce a standalone application that
does not include MATLAB Runtime or an installer.

Note The application is not cross platform, and the executable type depends on the platform on
which it was generated.

Create Function in MATLAB
In MATLAB, locate the MATLAB code that you want to deploy as a standalone application.

For this example, compile using the file magicsquare.m located in matlabroot\extern
\examples\compiler.

function m = magicsquare(n)

if ischar(n)
    n=str2double(n);
end
m = magic(n)
disp(m)

In the MATLAB command window, enter magicsquare(5);.

The output is:

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

 Create Standalone Application from MATLAB

1-5



Create Standalone Application Using Application Compiler App
Package the function into a standalone application using the Application Compiler app.
Alternatively, if you want to create a standalone application from the MATLAB command window
using a programmatic approach, see “Create Standalone Application Using
compiler.build.standaloneApplication” on page 1-8.

1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Application Compiler.

Alternately, you can open the Application Compiler app by entering applicationCompiler at
the MATLAB prompt.

2 In the MATLAB Compiler project window, specify the main file of the MATLAB application that
you want to deploy.

a
In the Main File section of the toolstrip, click .

b In the Add Files window, browse to matlabroot\extern\examples\compiler and select
magicsquare.m. Click Open.

The function magicsquare.m is added to the list of main files.
3 Decide whether to include the MATLAB Runtime installer in the generated application by

selecting one of the two options in the Packaging Options section:

• Runtime downloaded from web — Generates an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application.

• Runtime included in package — Generates an installer that includes the MATLAB Runtime
installer.

4 Customize the packaged application and its appearance:

1 Getting Started

1-6



• Application information — Editable information about the deployed application. You can
also customize the standalone applications appearance by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer” on page 4-2.

• Command line input type options — Selection of input data types for the standalone
application. For more information, see “Determine Data Type of Command-Line Input (For
Packaging Standalone Applications Only)” on page 4-4.

• Additional installer options — Edit the default installation path for the generated installer
and selecting custom logo. See “Change the Installation Path” on page 4-3 .

• Files required for your application to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project” on page 4-4.

• Files installed for your end user — Files that are installed with your application. These
files include:

 Create Standalone Application from MATLAB

1-7



• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application” on page 4-6.
• Additional runtime settings — Platform-specific options for controlling the generated

executable. See “Additional Runtime Settings” on page 4-7.

Caution On Windows operating systems, when creating a console only application, uncheck
the box Do not display the Windows Command Shell (console) for execution. By
default, this box is checked. If the box is checked, output from your console only application is
not displayed. Since this example is a console only application, the box must be unchecked.

5 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
6 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For further information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 3-12.

• PackagingLog.html — Log file generated by MATLAB Compiler.
7 To install your standalone application, see “Install Standalone Application” on page 1-10.

Create Standalone Application Using
compiler.build.standaloneApplication
As an alternative to the Application Compiler app, you can create a standalone application using a
programmatic approach. If you have already created an application using the Application Compiler,
see “Install Standalone Application” on page 1-10.

1 In MATLAB, locate the MATLAB code that you want to deploy as a standalone application. For
this example, compile using the file magicsquare.m located in matlabroot\extern
\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

2 Build the standalone application using the compiler.build.standaloneApplication
function.
buildResults = compiler.build.standaloneApplication(appFile);

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.standaloneApplication.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
magicsquarestandaloneApplication in your current working directory:

1 Getting Started

1-8



• includedSupportPackages.txt — Text file that lists all support files included in the
application.

• magicsquare.exe or magicsquare — Executable file that has the .exe extension if
compiled on a Windows system, or no extension if compiled on Linux or macOS systems.

• run_magicsquare.sh — Shell script file that sets the library path and executes the
application. This file is only generated on Linux and macOS systems.

• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were
not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations on page 13-2.

• readme.txt — Text file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Note The generated standalone executable does not include MATLAB Runtime or an installer. To
create an installer using the buildResults object, see “Create Standalone Application Installer
Using compiler.package.installer” on page 1-9.

3 To run magicsquare from MATLAB with the input argument 4, navigate to the
magicsquarestandaloneApplication folder and execute one of the following commands
based on your operating system:

Operating System Test in MATLAB Command Window
Windows !magicsquare 4
macOS system(['./run_magicsquare.sh

',matlabroot,' 4']);
Linux !./magicsquare 4

4 To run your standalone application outside of MATLAB, see “Run Standalone Application” on
page 1-10.

Create Standalone Application Installer Using
compiler.package.installer
As an alternative to the Application Compiler app, you can create a standalone application installer
using a programmatic approach. If you have already created an application installer using the
Application Compiler, see “Install Standalone Application” on page 1-10.

1 In MATLAB, locate the MATLAB code that you want to deploy as a standalone application. For
this example, compile using the file magicsquare.m located in matlabroot\extern
\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

2 Build the standalone application using the compiler.build.standaloneApplication
function and save the output in a compiler.build.Results object.
buildResults = compiler.build.standaloneApplication(appFile);

3 Create an installer by using the Results object buildResults as an input argument to the
compiler.package.installer function.
compiler.package.installer(buildResults);

 Create Standalone Application from MATLAB

1-9



The function creates a new folder that contains the standalone application installer.

You can specify additional options by using name-value arguments. For details, see
compiler.package.installer.

For example, specify the installer name and include MATLAB Runtime in the installer.
compiler.package.installer(buildResults, ...
'InstallerName','MyMagic_Install','RuntimeDelivery','installer');

Install Standalone Application
To install your application using an installer created by the Application Compiler app or the
compiler.package.installer function, see “Install Deployed Application” on page 7-12.

Run Standalone Application
1 In your system command prompt, navigate to the folder containing your standalone executable.
2 Run magicsquare with the input argument 5 by using one of the following commands based on

your operating system:

Operating System Command
Windows magicsquare 5
Linux Using the shell script:

./run_magicsquare.sh
<MATLAB_RUNTIME_INSTALL_DIR> 5

Using the executable:

./magicsquare 5
macOS Using the shell script:

./run_magicsquare.sh
<MATLAB_RUNTIME_INSTALL_DIR> 5

Using the executable:

./magicsquare.app/Contents/macOS/
magicsquare 5

Note To run the application without using the shell script on Linux and macOS, you must first
add MATLAB Runtime to the library path. For more information, see “Set MATLAB Runtime Path
for Deployment” on page 15-2.

3 The application outputs a 5-by-5 magic square in the console:

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

4 To create a command line shortcut for the application on Linux or macOS, use the alias
command.

1 Getting Started

1-10



alias mymagic='/path/to/run_magicsquare.sh <MATLAB_RUNTIME_INSTALL_DIR>'

To run your application with the input argument 4, type mymagic 4 in the terminal.
5 To make an alias permanent, append the command to the file ~/.bash_aliases in a Bash shell

or ~/.zprofile in a Zsh shell. For example,

echo "alias mymagic='~/MATLAB/apps/run_magicsquare.sh /usr/local/MATLAB/MATLAB_Runtime/v912'" >> ~/.bash_aliases

See Also
applicationCompiler | deploytool | compiler.build.standaloneApplication |
compiler.build.standaloneWindowsApplication | compiler.package.installer | mcc

More About
• “Install and Configure MATLAB Runtime” on page 7-3
• “Set MATLAB Runtime Path for Deployment” on page 15-2

 Create Standalone Application from MATLAB

1-11





MATLAB Runtime Additional Info

2



Differences Between MATLAB and MATLAB Runtime
MATLAB Runtime differs from MATLAB in several important ways:

• In MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the version of the

MATLAB Runtime associated with the version of MATLAB Compiler SDK with which it was
created. For example, if you compiled an application using version 6.3 (R2016b) of MATLAB
Compiler, users who do not have MATLAB installed must have version 9.1 of the MATLAB Runtime
installed. Use mcrversion to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

2 MATLAB Runtime Additional Info

2-2



Performance Considerations and MATLAB Runtime
Since MATLAB Runtime provides full support for the MATLAB language, including the Java
programming language, starting a compiled application takes approximately the same amount of time
as starting MATLAB. The amount of resources consumed by the MATLAB Runtime is necessary in
order to retain the power and functionality of a full version of MATLAB.

MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are threadsafe. This
can impact performance.

 Performance Considerations and MATLAB Runtime

2-3





Deploying Standalone Applications

3



Standalone Applications and Arguments

In this section...
“Overview” on page 3-2
“Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables” on page 3-2
“Run Standalone Applications that Use Arguments” on page 3-2

Overview
You can create a standalone to run the application without passing or retrieving any arguments to or
from it.

However, arguments can be passed to standalone applications created using MATLAB Compiler in the
same way that input arguments are passed to any console-based application.

The following are example commands used to execute an application called filename from Windows
or Linux command prompt with different types of input arguments.

Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables
To Pass.... Use This Syntax.... Notes
A file named helpfile filename helpfile  
Numbers or letters filename 1 2 3 a b c Do not use commas or other

separators between the
numbers and letters you pass.

Matrices as input filename "[1 2 3]" "[4 5
6]"

Place double quotes around
input arguments to denote a
blank space.

MATLAB variables for k=1:10
cmd = ['filename ',num2str(k)];
system(cmd);
end

To pass a MATLAB variable to a
program as input, you must first
convert it to a character vector.

Run Standalone Applications that Use Arguments
You call a standalone application that uses arguments from MATLAB with any of the following
commands:

• SYSTEM
• DOS
• UNIX
• !

To pass the contents of a MATLAB variable to the program as an input, the variable must first be
converted to a character vector. For example:

3 Deploying Standalone Applications

3-2



Using SYSTEM, DOS, or UNIX

Specify the entire command to run the application as a character vector (including input arguments).
For example, passing the numbers and letters 1 2 3 a b c could be executed using the SYSTEM
command, as follows:

system('filename 1 2 3 a b c')

Using the ! (Bang) Operator

You can also use the ! (bang) operator, from within MATLAB, as follows:

!filename 1 2 3 a b c

When you use the ! (bang) operator, the remainder of the input line is interpreted as the SYSTEM
command, so it is not possible to use MATLAB variables.

Using a Windows System

To run a standalone application by double-clicking it, you create a batch file that calls the standalone
application with the specified input arguments. For example:

 rem This is main.bat file which calls 
 rem filename.exe with input parameters

 filename "[1 2 3]" "[4 5 6]"
 @echo off
 pause

The last two lines of code in main.bat are added so that the window displaying your output stays
open until you press a key.

Once you save this file, you run your code with the arguments specified above by double clicking the
icon for main.bat.

Using a MATLAB File You Plan to Deploy

When running MATLAB files that use arguments that you also plan to deploy with MATLAB Compiler,
keep the following in mind:

• The input arguments you pass to your executable from a system prompt are received as character
vector input. Thus, if you expect the data in a different format (for example, double), you must first
convert the character vector input to the required format in your MATLAB code. For example, you
can use STR2NUM to convert the character vector input to numerical data.

• You cannot return values from your standalone application to the user. The only way to return
values from compiled code is to either display it on the screen or store it in a file.

In order to have data displayed back to the screen, do one of the following:

• Do not use semicolons to suppress commands that yield your return data.
• Use the DISP command to display the variable value, then redirect the output to other

applications using redirects (the > operator) or pipes (||) on non-Windows systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB File

Here are two ways to use a MATLAB file to take input arguments and display data to the screen:

 Standalone Applications and Arguments

3-3



Method 1

function [x,y]=foo(z);

if ischar(z)
z=str2num(z);
else
z=z;
end
x=2*z
y=z^2;
disp(y)

Method 2

function [x,y]=foo(z);

if isdeployed
z=str2num(z);
end
x=2*z
y=z^2;
disp(y)

3 Deploying Standalone Applications

3-4



Use Parallel Computing Toolbox in Deployed Applications
An application that uses the Parallel Computing Toolbox can use cluster profiles that are in your
MATLAB preferences folder. To find this folder, use prefdir.

For instance, when you create a standalone application, all of the profiles available in your Cluster
Profile Manager will be available in the application.

Your application can also use a cluster profile given in an external file. To enable your application to
use this file, you can either:

1 Link to the file within your code.
2 Pass the location of the file at run time.

Export Cluster Profile
To export a cluster profile to an external file:

1 In the Home tab, in the Environment section, select Parallel > Manage Cluster Profiles.
2 In the Cluster Profile Manager dialog, select a profile, and in the Manage section, click

Export.

Link to Parallel Computing Toolbox Profile Within Your Code
To enable your application to use a cluster profile given in an external file, you can link to the file
from your code. In this example, you will use absolute paths, relative paths, and the MATLAB search
path to link to cluster profiles. Note that since each link is specified before you compile, you must
ensure that each link does not change.

To set the cluster profile for your application, you can use the setmcruserdata function.

As your MATLAB preferences folder is bundled with your application, any relative links to files within
the folder will always work. In your application code, you can use the
myClusterProfile.mlsettings file found within the MATLAB preferences folder.

mpSettingsPath = fullfile(prefdir, 'myClusterProfile.mlsettings'); 
setmcruserdata('ParallelProfile', mpSettingsPath);

The function fullfile gives the absolute path for the external file. The argument given by
mpSettingsPath must be an absolute path. If the user of your application has a cluster profile
located on their file system at an absolute path that will not change, link to it directly:

mpSettingsPath = '/path/to/myClusterProfile.mlsettings'; 
setmcruserdata('ParallelProfile', mpSettingsPath);

This is a good practice if the cluster profile is centrally managed for your application. If the user of
your application has a cluster profile that is held locally, you can expand a relative path to it from the
current working directory:

mpSettingsPath = fullfile(pwd, '../rel/path/to/myClusterProfile.mlsettings'); 
setmcruserdata('ParallelProfile', mpSettingsPath);

This is a good practice if the user of your standalone application should supply their own cluster
profile. Any files that you add to your application at compilation are added to the MATLAB search

 Use Parallel Computing Toolbox in Deployed Applications

3-5



path. Therefore, you can also bundle a cluster profile that is held externally with your application.
First, use which to get the absolute path to the cluster profile. Then, link to it.

mpSettingsPath = which('myClusterProfile.mlsettings'); 
setmcruserdata('ParallelProfile', mpSettingsPath);

Finally, compile at the command line and add the cluster profile.

mcc -a /path/to/myClusterProfile.mlSettings -m myApp.m;

Note that to run your application before you compile, you must manually add /path/to/ to your
MATLAB search path.

Pass Parallel Computing Toolbox Profile at Run Time
If the user of your application myApp has a cluster profile that is selected at run time, you can specify
this at the command line.

myApp -mcruserdata ParallelProfile:/path/to/myClusterProfile.mlsettings

Note that when you use the setmcruserdata function in your code, you override the use of the -
mcruserdata flag.

Switch Between Cluster Profiles in Deployed Applications
When you use the setmcruserdata function, you remove the ability to use any of the profiles
available in your Cluster Profile Manager. To re-enable the use of the profiles in Cluster Profile
Manager, use the parallel.mlSettings file.

mpSettingsPath = '/path/to/myClusterProfile.mlsettings'; 
setmcruserdata('ParallelProfile', mpSettingsPath);

% SOME APPLICATION CODE

origSettingsPath = fullfile(prefdir, 'parallel.mlsettings'); 
setmcruserdata('ParallelProfile', origSettingsPath);

% MORE APPLICATION CODE

Sample C Code to Load Cluster Profile
You can call the mcruserdata function natively in C and C++ applications built with MATLAB
Compiler SDK.

mxArray *key = mxCreateString("ParallelProfile"); 
mxArray *value = mxCreateString("/path/to/myClusterProfile.mlsettings");
if (!setmcruserdata(key, value))
{
    fprintf(stderr, 
            "Could not set MCR user data: \n %s ",
            mclGetLastErrorMessage());
    return -1;
}

3 Deploying Standalone Applications

3-6



See Also
setmcruserdata | getmcruserdata

Related Examples
• “Using MATLAB Runtime User Data Interface” on page 8-4
• “Specify Parallel Computing Toolbox Profile in .NET Application” (MATLAB Compiler SDK)
• “Specify Parallel Computing Toolbox Profile in Java Application” (MATLAB Compiler SDK)

 Use Parallel Computing Toolbox in Deployed Applications

3-7



Integrate Application with Mac OS X Finder
In this section...
“Overview” on page 3-8
“Installing the Mac Application Launcher Preference Pane” on page 3-8
“Configuring the Installation Area” on page 3-8
“Running the Application” on page 3-10

Overview
Mac graphical applications, opened through the Mac OS X finder utility, require additional
configuration if MATLAB software or MATLAB Runtime are not installed in default locations.

Installing the Mac Application Launcher Preference Pane
Install the Mac Application Launcher preference pane, which gives you the ability to specify your
installation area.

1 In the Mac OS X Finder, navigate to install_area/toolbox/compiler/maci64.
2 Double-click MW_App_Launch.prefPane.

Note  The Mac Application Launcher manages only user preference settings. If you copy the
preferences defined in the launcher to the Mac System Preferences area, the preferences are still
manipulated in the User Preferences area.

Configuring the Installation Area
After you install the preference pane, you configure the installation area.

1 Open the preference pane by clicking the apple logo in the upper left corner of the desktop.
2 Click System Preferences. The MW_App_Launch preference pane appears in the Other area.

3 Deploying Standalone Applications

3-8



3 Define an installation area on your system by clicking Add Install Area.
4 Define the default installation path by browsing to it.
5 Click Open.

 Integrate Application with Mac OS X Finder

3-9



Modifying Your Installation Area

Occasionally, you remove an installation area, define additional areas, or change the order of
installation area precedence.

You can use the following options in MathWorks® Application Launcher to modify your installation
area:

• Add Install Area — Define the path on your system where your applications install by default.
• Remove Install Area — Remove a previously defined installation area.
• Move Up — After selecting an installation area, click to move the defined path up the list.

Binaries defined in installation areas at the top of the list have precedence over all succeeding
entries.

• Move Down — After selecting an installation area, click to move the defined path down the list.
Binaries defined in installation areas at the top of the list have precedence over all succeeding
entries.

• Apply — Save changes and exit MathWorks Application Launcher.
• Revert — Exit MathWorks Application Launcher without saving any changes.

Running the Application
When you create a Mac application, a Mac bundle is created. If the application does not require
standard input and output, open the application by clicking the bundle in the Mac OS X Finder utility.

The location of the bundle is determined by whether you use mcc,
compiler.build.standaloneApplication, or applicationCompiler to build the application:

3 Deploying Standalone Applications

3-10



• If you use applicationCompiler, the application bundle is placed in the
for_redistribution folder of the packaged application.

• If you use mcc, the application bundle is placed in the current working folder or in the output
folder, as specified by the mcc -d switch.

• If you use compiler.build.standaloneApplication, the application bundle is placed in the
ExecutableNamestandaloneApplication folder or in the output folder, as specified by the
OutputDir option.

See Also
applicationCompiler | mcc | compiler.build.standaloneApplication

More About
• “Create Standalone Application from MATLAB” on page 1-5

 Integrate Application with Mac OS X Finder

3-11



Files Generated After Packaging MATLAB Functions
When the packaging process is complete, three folders are generated in the target folder location:
for_redistribution, for_redistribution_files_only, and for_testing.

The file PackagingLog.html generated in the target folder location contains information on the mcc
command used and output from the packaging process.

for_redistribution Folder
Distribute the for_redistribution folder to users who do not have MATLAB installed on their
machines.

The folder contains the file MyAppInstaller_web.exe that installs the packaged application,
MATLAB Runtime, and all the files that enable use of the application on the target platform with the
target language in the target folder. It downloads MATLAB Runtime from the Internet if it is not
included in the installer at the time of packaging.

for_redistribution_files_only Folder
Distribute the for_redistribution_files_only folder to users who do not have MATLAB
installed on their machines. This folder contains specific files that enable use of the packaged
application on the target platform with the target language.

Standalone Applications
File Description
filename.exe Standalone executable file.
GettingStarted.html HTML file containing packaging information.
splash.png When the executable starts, the file is read from

the same folder where the executable is located,
and the splash screen is displayed.

Excel Add-Ins
File Description
_install.bat The file that registers the generated dll file.
filename.bas VBA module file that can be imported into a VBA

project.
filename.xla Excel add-in that can be added directly to Excel.

You do not need both .bas file and .xla file; one
of them is sufficient.

filename_2_0.dll The generated dll that needs to be registered
using mwregsvr.exe or regsvr32.exe.

GettingStarted.html HTML file with packaging and installation details.

for_testing Folder
Use the files in this folder to test your application. The folder contains all the intermediate and final
artifacts such as binaries, JAR files, header files, and source files for a specific target. The final

3 Deploying Standalone Applications

3-12



artifacts created during the packaging process are the same files as described in
“for_redistribution_files_only Folder” on page 3-12. For further information on how to test your
packaged applications, see the following topics:

Target Link
Standalone Application “Install Standalone Application” on page 1-10
Excel Add-In “Install and Use Function Wizard”

The intermediate artifacts generated are a result of packaging of the MATLAB files. They are not
significant to the user.

This folder also contains two text files. mccExcludedFiles.txt lists the files excluded from
packaged application, and requiredMCRProducts.txt contains product IDs of products required
by MATLAB Runtime to run the application.

See Also
mcc | deploytool

More About
• “Create Standalone Application from MATLAB” on page 1-5
• “Create Excel Add-In from MATLAB”

 Files Generated After Packaging MATLAB Functions

3-13





Customizing a Compiler Project

• “Customize an Application” on page 4-2
• “Manage Support Packages” on page 4-9

4



Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

4 Customizing a Compiler Project

4-2



Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

4-3



A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Determine Data Type of Command-Line Input (For Packaging
Standalone Applications Only)
When an executable standalone application is run in the command prompt, the default input type is
char. You can keep this default, or choose to interpret all inputs as numeric MATLAB doubles.

To pass inputs to the standalone application as MATLAB character vectors, select Treat all inputs to
the app as MATLAB character vectors. In this case, you must include code to convert char to a
numeric MATLAB type in the MATLAB function to be deployed as a standalone application.

To pass inputs to the standalone application as numeric MATLAB variables, select Treat all inputs to
the app as numeric MATLAB doubles. option in the Application Compiler App. Thus, you do not
need to include code to convert char to a numeric MATLAB type. Non numeric inputs to the
application may result in an error.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

4 Customizing a Compiler Project

4-4



If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python® package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

 Customize an Application

4-5



To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

4 Customizing a Compiler Project

4-6



When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Standalone
Applications

• Do not display the
Windows Command
Shell (console) for
execution — If you
select this option on a
Windows platform,
when you double-click
the application from
the file explorer, the
application window
opens without a
command prompt.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

 Customize an Application

4-7



Type of Packaged
Application

Description Additional Runtime Settings Options

Excel Add-Ins • Register the
component for the
current user
(Recommended for
non-admin users) —
This option enables
registering the
component for the
current user account.
It is provided for users
without admin rights.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

See Also
applicationCompiler | libraryCompiler

More About
• “Create Standalone Application from MATLAB” on page 1-5
• “Create Excel Add-In from MATLAB”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)

4 Customizing a Compiler Project

4-8



Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

4-9



support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

4 Customizing a Compiler Project

4-10



MATLAB Code Deployment

• “How Does MATLAB Deploy Functions?” on page 5-2
• “Dependency Analysis Using MATLAB Compiler” on page 5-3
• “MEX-Files, DLLs, or Shared Libraries” on page 5-5
• “Deployable Archive” on page 5-6
• “Write Deployable MATLAB Code” on page 5-9
• “Calling Shared Libraries in Deployed Applications” on page 5-12
• “MATLAB Data Files in Compiled Applications” on page 5-13

5



How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies are files
included in the generated package and originate from functions called by the file. Dependencies
are affected by:

• File type — MATLAB, Java, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about dependency analysis, see “Dependency Analysis Using MATLAB
Compiler” on page 5-3.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared Libraries” on page
5-5.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives, see “Deployable Archive” on page 5-6.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies, the
compiler invokes the required third-party compiler.

5 MATLAB Code Deployment

5-2



Dependency Analysis Using MATLAB Compiler

In this section...
“Function Dependency” on page 5-3
“Data File Dependency” on page 5-3
“Exclude Files From Package” on page 5-4

MATLAB Compiler uses a dependency analysis function to determine the list of necessary files to
include in the generated package. Sometimes, this process generates a large list of files, particularly
when MATLAB object classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at package time. Dependency analysis also processes include/exclude files on
each pass.

Tip  To improve package time performance and lessen application size, prune the path with the mcc
command’s -N and -p flags. You can also specify Files required for your application to run in the
compiler app or use the AdditionalFiles option in a compiler.build function.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency analysis
cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and automatically
include files that your MATLAB functions access by calling any of these functions: audioinfo,
audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo, importdata, imread,
load, matfile, mmfileinfo, open, readtable, type, VideoReader, xlsfinfo, xlsread,
xmlread, and xslt.

To ensure that a specific file is included, specify the full path to the file as a character array in the
function.

fileread('D:\Work\MATLAB\Project\myfile.ext')

The compiler app automatically adds these data files to the Files required for your application to
run area.

 Dependency Analysis Using MATLAB Compiler

5-3



Exclude Files From Package
To ignore data files during dependency analysis, use one or more of the following options. For
examples on how to use these options together, see %#exclude.

• Use the %#exclude pragma in your MATLAB code to ignore a file or function during dependency
analysis.

• Use the -X flag in your mcc command to ignore all data files detected during dependency analysis.
• Use the AutoDetectDataFiles option in a compiler.build function to control whether data
files are automatically included in the package. Setting this to false/'off'/0 is equivalent to
using -X.

See Also
mcc | applicationCompiler | compiler.build.standaloneApplication

More About
• Application Compiler

5 MATLAB Code Deployment

5-4



MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency analyzer can
find them. Doing so allows you to avoid many common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to determine
their dependencies, explicitly include all executable files these files require. To do so, use either
the mcc -a option or the Files required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function called by a MEX-
file, DLL, or shared library, then manually include that function. To do so, use either the mcc -a
option or the Files required for your application to run field in the compiler app.

• Not all functions are compatible with the compiler. Check the file mccExcludedFiles.log after
your build completes. This file lists all functions called from your application that you cannot
deploy.

 MEX-Files, DLLs, or Shared Libraries

5-5



Deployable Archive
Each application or shared library you produce using the compiler has an embedded deployable
archive. The archive contains all the MATLAB based content (MATLAB files, MEX-files, and so on). All
MATLAB files in the deployable archive are encrypted using the Advanced Encryption Standard (AES)
cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain encrypted. For
more information on how to extract the deployable archive refer to the references in the following
table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK Java integration “Define Embedding and Extraction Options for
Deployable Java Archive” (MATLAB Compiler
SDK)

MATLAB Compiler Excel integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding”

5 MATLAB Code Deployment

5-6



Additional Details
Multiple deployable archives, such as those generated with COM components, .NET assemblies, or
Excel add-ins, can coexist in the same user application. You cannot, however, mix and match the
MATLAB files they contain. You cannot combine encrypted and compressed MATLAB files from
multiple deployable archives into another deployable archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique cryptographic key.
MATLAB files with different keys, placed in the same deployable archive, do not execute. If you want
to generate another application with a different mix of MATLAB files, recompile these MATLAB files
into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed compilation, but
only if these files did not exist before compilation initiates. Run help mcc -K for more information.

 Deployable Archive

5-7



Caution Release Engineers and Software Configuration Managers: Do not use build procedures
or processes that strip shared libraries on deployable archives. If you do, you can possibly strip the
deployable archive from the binary, resulting in run-time errors for the driver application.

5 MATLAB Code Deployment

5-8



Write Deployable MATLAB Code
In this section...
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 5-9
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files” on page 5-
10
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-10
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 5-10
“Do Not Create or Use Nonconstant Static State Variables” on page 5-10
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 5-11

Packaged Applications Do Not Process MATLAB Files at Run Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files are
suspended or frozen at the time of compilation. This does not mean that you cannot deploy a flexible
application—it means that you must design your application with flexibility in mind. If you want the
end user to be able to choose between two different methods, for example, both methods must be
available in the deployable archive.

MATLAB Runtime only works on MATLAB code that was encrypted when the deployable archive was
built. Any function or process that dynamically generates new MATLAB code will not work against
MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate MATLAB code
dynamically. Because MATLAB Runtime only executes encrypted MATLAB files, and the Deep
Learning Toolbox generates unencrypted MATLAB files, some functions in the Deep Learning Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot be deployed.
HELP, for example, is dynamic and not available in deployed mode. You can use LOADLIBRARY in
deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to deploy it,
perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run-time processing, your end users
must have an installed copy of MATLAB.

 Write Deployable MATLAB Code

5-9



Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files
In general, good programming practices advise against redirecting a program search path
dynamically within the code. Many developers are prone to this behavior since it mimics the actions
they usually perform on the command line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot change.
Therefore, any attempt to change these paths (using the cd command or the addpath command)
fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-
10 for details.

Use isdeployed Functions To Execute Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is deployable,
and which is not. Such specification minimizes your compilation errors and helps create more
efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m. Using ismcc
and isdeployed, you specify when and what is packaged and executed.
if ~(ismcc || isdeployed)
    addpath(mypath);
end

Gradually Refactor Applications That Depend on Noncompilable
Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable or non-
deployable functions that use isdeployed. Your eventual goal is “graceful degradation” of non-
deployable code. In other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a phase of
perpetual rewriting, debugging, and optimization. In some toolboxes, such as the Deep Learning
Toolbox product, the code goes through a period of self-training as it reacts to various data
permutations and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished state and is
ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for code that calls
undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

5 MATLAB Code Deployment

5-10



• Global variables in MATLAB code
• Static variables in MEX-files
• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the MATLAB
Runtime process runs in a single thread. You cannot load more than one of these non-constant, static
variables into the same process. In addition, these static variables do not work well in multithreaded
applications.

When programming against packaged MATLAB code, you should be aware that an instance of
MATLAB Runtime is created for each instance of a new class. If the same class is instantiated again
using a different variable name, it is attached to the MATLAB Runtime instance created by the
previous instance of the same class. In short, if an assembly contains n unique classes, there will be
maximum of n instances of MATLAB Runtime created, each corresponding to one or more instances
of one of the classes.

If you must use static variables, bind them to instances. For example, defining instance variables in a
Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to Deploy
You must have a valid MathWorks license for toolboxes you use to create deployable MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

 Write Deployable MATLAB Code

5-11

https://www.mathworks.com/products/compiler/compiler_support.html


Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore, to create an
application that uses the loadlibrary function with a header file, follow these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile'); 

This creates mylibrarymfile.m in the current folder. If you are on Windows, another file
named library_thunk_pcwin64.dll is also created in the current folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the library’s .dll along
with library_thunk_pcwin64.dll, if created, using the -a option of mcc command. If you
are using Application Compiler or Library Compiler apps, add the .dll files to the Files
required for your application to run section of the app.

• If you are providing the library as an external file that is not integrated with the deployed
application, place the library .dll file in the same folder as the compiled application. If you
are on Windows, you must integrate library_thunk_pcwin64.dll into your compiled
application.

The benefit of this approach is that you can replace the library with an updated version
without recompiling the deployed application. Replacing the library with a different version
works only if the function signatures of the function in the library are not altered. This is
because mylibrarymfile.m and library_thunk_pcwin64.dll are tied to the function
signatures of the functions in the library.

Note You cannot use loadlibrary inside MATLAB to load a shared library built with MATLAB. For
more information on loadlibrary, see “Limitations to Shared Library Support”.

Note Operating systems have a loadlibrary function, which loads specified Windows operating
system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call Functions in C Library Loaded with loadlibrary”

5 MATLAB Code Deployment

5-12



MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 5-13
“Load and Save Functions” on page 5-13

Explicitly Including MATLAB Data files Using the %#function Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by default. See
“Dependency Analysis Using MATLAB Compiler” on page 5-3.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify the
%#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use the
%#function pragma within your code to include a dependency on the gmdistribution class, for
instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD and SAVE
functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB workspace.
• Specify the data file by either using WHICH (to locate its full path name) define it relative to the

location of ctfroot.
• All MAT-files are unchanged after mcc runs. These files are not encrypted when written to the

deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 5-6.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and outside, of
MATLAB.

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a ...
     '.\userdata\extra_data.mat' -a ... 
     '..\externdata\extern_data.mat'

 MATLAB Data Files in Compiled Applications

5-13



ex_loadsave.m
function ex_loadsave
% This example shows how to work with the 
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
%    user_data.mat 
%    userdata\extra_data.mat 
%    ..\externdata\extern_data.mat
%
% Compile this example with the mcc command: 
%     mcc -m ex_loadsave.m -a 'user_data.mat' -a
%     '.\userdata\extra_data.mat' 
%         -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will 
%    be included as
% relative path to ctfroot; All other folders will have the 
%    folder
% structure included in the deployable archive file from root of the 
%     disk drive.
%
% If a data file is outside of the main MATLAB file path,
%     the absolute path will be
% included in deployable archive and extracted under ctfroot. For example: 
%   Data file  
%     "c:\$matlabroot\examples\externdata\extern_data.mat"
%     will be added into deployable archive and extracted to
%  "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
% 
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are 
% included in the deployable archive.
%
% The target data file is:
%   .\output\saved_data.mat
%   When writing the file to local disk, do not save any files 
%    under ctfroot since it may be refreshed and deleted  
%   when the application isnext started.

%==== load data file =============================
if isdeployed
    % In deployed mode, all file under CTFRoot in the path are loaded
    % by full path name or relative to $ctfroot.
    % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));    
    % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
    LOADFILENAME1=which(fullfile('user_data.mat'));
    LOADFILENAME2=which(fullfile('extra_data.mat'));
    % For external data file, full path will be added into deployable archive;
    % you don't need specify the full path to find the file.
    LOADFILENAME3=which(fullfile('extern_data.mat'));
else
    %running the code in MATLAB
    LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
                                     'Data_Handling','user_data.mat');
    LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
                              'Data_Handling','userdata','extra_data.mat');
    LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
                                      'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

5 MATLAB Code Deployment

5-14



% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save  the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if ( ~isdir(SAVEPATH))
    mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');
disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result'); 

 MATLAB Data Files in Compiled Applications

5-15





Standalone Application Creation

6



Dependency Analysis Function and User Interaction with the
Compilation Path

addpath and rmpath in MATLAB
MATLAB Compiler uses the MATLAB search path to analyze dependencies. See addpath, rmpath,
savepath for information on working with the search path.

Note mcc does not use the MATLAB startup folder and will not find any path information saved
there.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to use for the current
compilation. This feature is useful when you are compiling files that are in folders currently not on
the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed manipulation of the path. This
feature acts like a “filter” applied to the MATLAB path for a given compilation. The first option is -N.
Passing -N on the mcc command line effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler\deploy
• matlabroot\toolbox\compiler

It also retains all subfolders of the above list that appear on the MATLAB path at compile time.
Including -N on the command line allows you to replace folders from the original path, while
retaining the relative ordering of the included folders. All subfolders of the included folders that
appear on the original path are also included. In addition, the -N option retains all folders that the
user has included on the path that are not under matlabroot\toolbox.

Use the -p option to add a folder to the compilation path in an order-sensitive context, i.e., the same
order in which they are found on your MATLAB path. The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an absolute path, it is
assumed to be under the current working folder. The rules for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path, the folder and all its subfolders
that appear on the original path are added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path, that folder is not included
in the compilation. (You can use -I to add it.)

6 Standalone Application Creation

6-2



• If a path is added with the -I option while this feature is active (-N has been passed) and it is
already on the MATLAB path, it is added in the order-sensitive context as if it were included with
-p. Otherwise, the folder is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

 Dependency Analysis Function and User Interaction with the Compilation Path

6-3





Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers and to end users.

• “About the MATLAB Runtime” on page 7-2
• “Install and Configure MATLAB Runtime” on page 7-3
• “Run Applications Using a Network Installation of MATLAB Runtime” on page 7-9
• “MATLAB Runtime on Big Data Platforms” on page 7-10
• “Install Deployed Application” on page 7-12

7



About the MATLAB Runtime

In this section...
“How is the MATLAB Runtime Different from MATLAB?” on page 7-2
“Performance Considerations and the MATLAB Runtime” on page 7-2

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other files that
enables the execution of MATLAB files on computers without an installed version of MATLAB.
Applications that use artifacts built with MATLAB Compiler SDK require access to an appropriate
version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB Runtime on their
computers or know the location of a network-installed MATLAB Runtime. The installers generated by
the compiler apps may include the MATLAB Runtime installer. If you compiled your artifact using
mcc, you should direct your end-users to download the MATLAB Runtime installer from the website
https://www.mathworks.com/products/compiler/mcr.

See “Install and Configure MATLAB Runtime” on page 7-3 for more information.

How is the MATLAB Runtime Different from MATLAB?
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the version of the

MATLAB Runtime associated with the version of MATLAB Compiler SDK with which it was
created. For example, if you compiled an application using version 6.3 (R2016b) of MATLAB
Compiler, users who do not have MATLAB installed must have version 9.1 of the MATLAB Runtime
installed. Use mcrversion to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language, including the
Java programming language, starting a compiled application takes approximately the same amount of
time as starting MATLAB. The amount of resources consumed by the MATLAB Runtime is necessary
in order to retain the power and functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are threadsafe. This
can impact performance.

7 Deployment Process

7-2

https://www.mathworks.com/products/compiler/matlab-runtime.html


Install and Configure MATLAB Runtime
Supported Platforms: Windows, Linux, macOS

MATLAB Runtime contains the libraries needed to run MATLAB applications on a target system
without a licensed copy of MATLAB.

Download MATLAB Runtime Installer
Download MATLAB Runtime using one of the following options:

• Download the MATLAB Runtime installer at the latest update level for the selected release from
the website at https://www.mathworks.com/products/compiler/matlab-runtime.html. This option is
best for end users who want to run deployed applications.

• Use the MATLAB function compiler.runtime.download to download the MATLAB Runtime
installer matching the version and update level of MATLAB from where the command is executed.
If the installer has already been downloaded to the machine, it returns the path to the MATLAB
Runtime installer. If the machine is offline, it returns a URL to the MATLAB Runtime installer. This
option is best for developers who want to create application installers that contain MATLAB
Runtime.

Install MATLAB Runtime Interactively
To install MATLAB Runtime:

1 Extract the archive containing the MATLAB Runtime installer.

Platform Steps
Windows Unzip the MATLAB Runtime installer.

Right-click the ZIP file MATLAB_Runtime_R2022a_win64.zip and
select Extract All.

Linux Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2022a MATLAB Runtime
installer, at the terminal, type:

unzip MATLAB_Runtime_R2022a_glnxa64.zip

macOS Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2022a MATLAB Runtime
installer, at the terminal, type:

unzip MATLAB_Runtime_R2022a_maci64.zip

Note The release part of the installer file name (_R2022a_) changes from one release to the
next.

2 Start the MATLAB Runtime installer.

 Install and Configure MATLAB Runtime

7-3

https://www.mathworks.com/products/compiler/matlab-runtime.html


Platform Steps
Windows Double-click the file setup.exe from the extracted files to start the

installer.
Linux At the terminal, type:

sudo -H ./install

Note You may need to allow the root user to access the running X
server:

xhost +SI:localuser:root
sudo -H ./install
xhost -SI:localuser:root

macOS At the terminal, type:

./install

Note You may need to enter an administrator user name and
password after you run ./install.

Note If you are running the MATLAB Runtime installer on a shared folder, be aware that other
users of the share may need to alter their system configuration.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the information and
then click Next to proceed with the installation.

4 In the Folder Selection dialog box, specify the folder in which you want to install MATLAB
Runtime.

Note You can have multiple versions of MATLAB Runtime on your computer, but only one
installation for any particular version. If you already have an existing installation, the MATLAB
Runtime installer does not display the Folder Selection dialog box because it overwrites the
existing installation in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and macOS platforms, after copying files to your disk, the MATLAB Runtime installer

displays the Product Configuration Notes dialog box. This dialog box contains information
necessary for setting your path environment variables. Copy the path information from this
dialog box, save it to a text file, and then click Next. For information on setting environment
variables, see “Set MATLAB Runtime Path for Deployment” on page 15-2.

7 Click Finish to exit the installer.

The default MATLAB Runtime installation directory for R2022a is specified in the following table:

Operating System MATLAB Runtime Installation Directory
Windows C:\Program Files\MATLAB\MATLAB Runtime

\v912
Linux /usr/local/MATLAB/MATLAB_Runtime/v912

7 Deployment Process

7-4



Operating System MATLAB Runtime Installation Directory
macOS /Applications/MATLAB/MATLAB_Runtime/

v912

Install MATLAB Runtime Noninteractively
To install MATLAB Runtime without having to interact with the installer dialog boxes, use one of
these noninteractive modes:

• Silent — The installer runs as a background task and does not display any dialog boxes.
• Automated — The installer displays the dialog boxes but does not wait for user interaction.

When run in silent or automated mode, the MATLAB Runtime installer uses default values for
installation options. You can override these values by using MATLAB Runtime installer command-line
options or an installer control file.

Note When running in silent or automated mode, the installer overwrites the installation location.

Run Installer in Silent Mode

To install MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer archive to a temporary folder.
2 In your system command prompt, navigate to the folder where you extracted the installer.
3 Run the MATLAB Runtime installer, specifying the -mode silent and -agreeToLicense yes

options on the command line.

Note On most platforms, the installer is located at the root of the folder into which the archive
was extracted. On 64-bit Windows, the installer is located in the archive bin folder.

Platform Command
Windows setup -mode silent -agreeToLicense

yes
Linux ./install -mode silent -

agreeToLicense yes
macOS ./install -mode silent -

agreeToLicense yes

Note If you do not include the -agreeToLicense yes option, the installer does not install
MATLAB Runtime.

4 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file named
mathworks_username.log, where username is your Windows login name, in the location
defined by your TEMP environment variable.

5 On Linux and macOS systems, the MATLAB Runtime installer displays the log information at the
command prompt and also saves it to a file if you use the -outputFile option.

 Install and Configure MATLAB Runtime

7-5



Customize a Noninteractive Installation

When run in one of the noninteractive modes, the installer uses the default values unless you specify
otherwise. Like the MATLAB installer, the MATLAB Runtime installer accepts a number of command-
line options that modify the default installation properties.

Option Description
-destinationFolder Specifies where MATLAB Runtime is installed.
-outputFile Specifies where the installation log file is written.
-tmpdir Specifies where temporary files are stored during

installation.

Caution The installer deletes everything inside
the specified folder.

-automatedModeTimeout Specifies how long, in milliseconds, that each
dialog box is displayed when run in automatic
mode.

-inputFile Specifies an installer control file that contains
your command-line options and values. Omit the
dashes and put each option and value pair on a
separate line.

Note The MATLAB installer archive includes an example installer control file called
installer_input.txt. This file contains all of the options available for a full MATLAB installation.
The options listed in this section are valid for the MATLAB Runtime installer.

Install MATLAB Runtime without Administrator Rights
To install MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you have
administrator rights.

2 Copy the folder where MATLAB Runtime was installed to the machine without administrator
rights. You can compress the folder into a zip file for distribution.

3 On the machine without administrator rights, add the <MATLAB_RUNTIME_INSTALL_DIR>
\runtime\arch directory to the user’s PATH environment variable. For more information, see
“Set MATLAB Runtime Path for Deployment” on page 15-2.

Install Multiple MATLAB Runtime Versions on Single Machine
MCRInstaller supports the installation of multiple versions of MATLAB Runtime on a target
machine. This capability allows applications compiled with different versions of MATLAB Runtime to
execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you can remove the
unwanted ones. On Windows, run Add or Remove Programs from the Control Panel to remove a
specific version. On Linux, manually delete the unwanted MATLAB Runtime directories. You can
remove unwanted versions before or after installation of a more recent version of MATLAB Runtime
because versions can be installed or removed in any order.

7 Deployment Process

7-6



Note Installing multiple versions of MATLAB Runtime on the same machine is not supported on
macOS.

Install MATLAB and MATLAB Runtime on Same Machine
To test your deployed component on your development machine, you do not need an installation of
MATLAB Runtime. The MATLAB installation that you use to compile the component can act as a
MATLAB Runtime replacement.

You can, however, install MATLAB Runtime for debugging purposes.

Modify Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must adjust the
system library path according to your needs.

To run deployed MATLAB code against MATLAB Runtime rather than MATLAB, ensure that your
library path lists the MATLAB Runtime directories before any MATLAB directories.

For information on setting environment variables, see “Set MATLAB Runtime Path for Deployment”
on page 15-2.

Uninstall MATLAB Runtime
The method you use to uninstall MATLAB Runtime from your computer varies depending on your
platform.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control panel, and
double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the
<MATLAB_RUNTIME_INSTALL_DIR>\uninstall\bin\<arch> folder, where
<MATLAB_RUNTIME_INSTALL_DIR> is your MATLAB Runtime installation folder and <arch> is
an architecture-specific folder, such as win32 or win64.

2 Select MATLAB Runtime from the list of products in the Uninstall Products dialog box and click
Next.

3 Click Finish.

Linux

1 Close all instances of MATLAB and MATLAB Runtime.
2 Enter this command at the Linux terminal:

rm -rf <MATLAB_RUNTIME_INSTALL_DIR>

Caution Be careful when using the rm command, as deleted files cannot be recovered.

 Install and Configure MATLAB Runtime

7-7



macOS

1 Close all instances of MATLAB and MATLAB Runtime.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation folder might

be named MATLAB_Compiler_Runtime.app in your Applications folder.
3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty Trash from

the Finder menu.

See Also
compiler.runtime.download

More About
• About MATLAB Runtime on page 7-2
• “MATLAB Runtime Startup Options” on page 8-2
• “Set MATLAB Runtime Path for Deployment” on page 15-2

7 Deployment Process

7-8



Run Applications Using a Network Installation of MATLAB
Runtime

Local clients on a network can access MATLAB Runtime on a network drive.

On Linux systems, distributing to a network file system is the same as distributing to a local file
system. After installing MATLAB Runtime, set the LD_LIBRARY_PATH environment variable or use
shell scripts that point to the MATLAB Runtime installation. For information on setting the library
path, see “Set MATLAB Runtime Path for Deployment” on page 15-2.

On Windows systems, complete the following steps to run applications using a network install of
MATLAB Runtime:

1 Install MATLAB Runtime onto a machine with the same system architecture as the network drive.
For details, see “Install and Configure MATLAB Runtime” on page 7-3.

2 Copy the entire MATLAB Runtime installation folder onto the network drive.
3 Add the directory <MATLAB_RUNTIME_INSTALL_DIR>\<VERSION>\runtime\<ARCH> to the

path on all client machines. For instructions, see “Set MATLAB Runtime Path for Deployment” on
page 15-2. All network clients can then execute compiled applications.

4 The following table specifies which DLLs to register on each client machine to deploy specific
applications.

Application Deployed DLLs to Register
Excel Add-Ins mwcomutil.dll

mwcommgr.dll
.NET Assemblies and COM Components mwcomutil.dll

To register these DLLs:

a Open a system command prompt
b Navigate to matlabroot\bin\version, where matlabroot represents the location of

MATLAB or MATLAB Runtime that corresponds to the MATLAB release that you used to
compile your application.

c Run one or both of the following commands:

mwregsvr mwcomutil.dll

mwregsvr mwcommgr.dll

For more information about the mwregsvr utility, see “Register COM Component” (MATLAB
Compiler SDK).

 Run Applications Using a Network Installation of MATLAB Runtime

7-9



MATLAB Runtime on Big Data Platforms
MATLAB Runtime can be downloaded and installed on big data platforms such as Cloudera®, Apache
Ambari™, and Azure® HDInsight.

Cloudera
MATLAB Runtime can be downloaded as a parcel from within Cloudera Manager.

Download URL

https://ssd.mathworks.com/supportfiles/downloads/R2022a/deployment_files/
R2022a/cdhparcels

After downloading the parcel, you can and distribute and activate it across the cluster. For more
information on how to work with Cloudera Manager and parcels, see the Cloudera documentation.

Apache Ambari

Warning MATLAB Runtime support for Apache Ambari will be removed in a future release.

You can download MATLAB Runtime as an Apache Ambari stack for distribution across a cluster
using the following URLs:

Download URLs

https://ssd.mathworks.com/supportfiles/downloads/R2022a/deployment_files/
R2022a/ambari/matlab-runtime-2022a-service.tgz

https://ssd.mathworks.com/supportfiles/downloads/R2022a/deployment_files/
R2022a/ambari/matlab-runtime-2022a-service.sha1

For more information, see the Apache Ambari documentation.

Azure HDInsight
You can download MATLAB Runtime onto an Azure HDInsight cluster using the following URLs:

Download URLs

https://ssd.mathworks.com/supportfiles/downloads/R2022a/deployment_files/
R2022a/hdinsight/runtime_install_R2022a_hdinsight.sh

https://ssd.mathworks.com/supportfiles/downloads/R2022a/deployment_files/
R2022a/hdinsight/matlab-runtime-2022a-glnxa64.tgz

Use the script action URL within the Azure interface to download and deploy MATLAB Runtime
across the cluster.

7 Deployment Process

7-10



See Also

External Websites
• Cloudera parcels
• Customize AzureHDInsight clusters by using script actions

 MATLAB Runtime on Big Data Platforms

7-11

https://docs.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-customize-cluster-linux


Install Deployed Application
After you create an installer for your compiled application, you can install it interactively using a
graphical interface or noninteractively using command-line arguments.

Install Application Interactively
Complete the following steps according to your operating system to install the application my_app
interactively using MyAppInstaller.

1 Start the installer.

Platform Steps
Windows Double-click the file MyAppInstaller.exe.
Linux In the terminal, type:

sudo -H ./MyAppInstaller

Note The -H option sets the HOME environment variable to the home
directory of the root user and should be used for graphical
applications.

macOS In the terminal, type:

./MyAppInstaller

Note You may need to enter an administrator username and password
after you run ./MyAppInstaller.

2 If you want to connect to the Internet using a proxy server, click Connection Settings. Enter
the proxy server settings in the provided window and click OK. Click Next.

3 Choose the installation folder for the application. To create a desktop shortcut, check the box
labeled Add a shortcut to the desktop. Click Next.

4 If MATLAB Runtime is not already installed on your machine, choose the installation folder for
the MATLAB Runtime libraries and click Next.

5 Select Yes to accept the terms of the MATLAB Runtime license agreement and click Next.
6 Click Install > to begin the installation.
7 On Linux and macOS platforms, after copying files to your disk, the installer displays the

Product Configuration Notes dialog box. This dialog box contains information necessary for
setting your path environment variables. Copy the path information from this dialog box, save it
to a text file, and then click Next. For information on setting environment variables, see “Set
MATLAB Runtime Path for Deployment” on page 15-2.

8 Click Finish to exit the installer.
9 If you accepted the default settings, you can find the installed application in one of the following

locations:

Windows C:\Program Files\my_app
macOS /Applications/my_app
Linux /usr/my_app

7 Deployment Process

7-12



Install Application Noninteractively
If you have many installations to perform, you can specify installation arguments as command-line
arguments or in an installer control file to save time and prevent errors.

To install an application without having to interact with the installer dialog boxes, use one of the
following noninteractive modes:

• Silent — The installer runs as a background task and does not display any dialog boxes.
• Automated — The installer displays the dialog boxes but does not wait for user interaction.

Caution On Linux and macOS systems, the installer displays information necessary for setting your
environment variables in the Product Configuration Notes dialog box. If you use the installer in
automated or silent mode, you must locate your MATLAB Runtime installation directory in order to
set the library path after installation. For more information, see “Set MATLAB Runtime Path for
Deployment” on page 15-2.

Note When running in silent or automated mode, the installer overwrites the installation location.

Run Installer in Silent Mode

To install the application in silent mode:

1 Run the installer on the command line and specify the options -mode silent and -
agreeToLicense yes.

Platform Command
Windows MyAppInstaller.exe -agreeToLicense

yes -mode silent
Linux ./MyAppInstaller -agreeToLicense

yes -mode silent
macOS ./MyAppInstaller -agreeToLicense

yes -mode silent

Note If you do not include -agreeToLicense yes as the first option, the installer will not
install the application.

2 View a log of the installation.

On Windows systems, the installer creates a log file named mathworks_username.log, where
username is your Windows login name, in the location defined by your TEMP environment
variable. You can specify a log file using the -outputFile option.

On Linux and macOS systems, the installer displays the log information at the command prompt.
If you specify a file using the -outputFile option, it also saves the log information to the file.

Customize Noninteractive Installation

When run in one of the noninteractive modes, the installer uses the default values for installation
options unless you specify otherwise. Like the MATLAB installer, the application installer accepts a
number of command-line options that modify the default installation properties.

 Install Deployed Application

7-13



To specify options on the command line, separate each option and its value with a space. For
example,

./MyAppInstaller -agreeToLicense yes -mode silent 
-outputFile myapp_log.txt -desktopShortcut true -startMenuShortcut true

Option Description Comment
-destinationFolder Specifies where the application

and MATLAB Runtime are
installed.

In the destination folder,
MATLAB Runtime is installed in
a folder named after the version
number, for example, v912.

-outputFile Specifies where the installation
log file is written.

 

-automatedModeTimeout Specifies how long, in
milliseconds, that the dialog
boxes are displayed when run in
automated mode.

The default value is 1000
milliseconds.

-desktopShortcut true|
false

Specifies whether to create a
desktop shortcut icon for the
installed application.

The default value is false. This
option is only used on Windows.

-startMenuShortcut true|
false

Specifies whether to create a
Start Menu shortcut icon for the
installed application.

The default value is false. This
option is only used on Windows.

-tmpdir Specifies where temporary files
are stored during installation.

The installer overwrites
anything in the directory.

-inputFile Specifies an installer control file
that contains your command-
line options and values.

Omit the dash before each
option, and put each option and
value pair on a separate line.
For example:

agreeToLicense yes
mode automated 
outputFile myapp_log.txt

See Also

More About
• “Create Standalone Application from MATLAB” on page 1-5
• “Install and Configure MATLAB Runtime” on page 7-3
• “Set MATLAB Runtime Path for Deployment” on page 15-2

7 Deployment Process

7-14



Work with the MATLAB Runtime

• “MATLAB Runtime Startup Options” on page 8-2
• “Using MATLAB Runtime User Data Interface” on page 8-4
• “Display MATLAB Runtime Initialization Messages” on page 8-6

8



MATLAB Runtime Startup Options

Set MATLAB Runtime Options
For a standalone executable, set MATLAB Runtime options by specifying the -R switch and
arguments. You can set options from either of the following:

• The Additional Runtime Settings area of the compiler apps.
• The mcc command.

Note Not all options are available for all compilation targets.

Use a Compiler App

In the Additional Runtime Settings area of the compiler apps, you can set the following options.

MATLAB Runtime Startup
Option

Description Setting

-nojvm Disable the Java Virtual
Machine (JVM™), which is
enabled by default. This can
help improve the MATLAB
Runtime performance.

Select the No JVM check box.

-nodisplay On Linux, open the MATLAB
Runtime without display
functionality.

In the Settings box, enter -R -
nodisplay.

-logfile Write information about the
MATLAB Runtime startup to a
logfile.

Select the Create log file check
box. Enter the path to the log
file, including the log file name,
in the Log File box.

-startmsg Specify message to be displayed
when the MATLAB Runtime
begins initialization.

In the Settings box, enter -R
'startmsg, message text'.

-completemsg Specify message to be displayed
when the MATLAB Runtime
completes initialization.

In the Settings box, enter -R
'completemsg, message
text'.

Set MATLAB Runtime Startup Options Using the mcc Command Line

When you use the command line, specify the -R switch to invoke the MATLAB Runtime startup
options you want to use.

Following are examples of using mcc -R to invoke -nojvm, -nodisplay, and -logfile when
building a standalone executable (designated by the -m switch).

Set -nojvm

mcc -m -R -nojvm -v foo.m

8 Work with the MATLAB Runtime

8-2



Set -nodisplay (Linux Only)

mcc -m -R -nodisplay -v foo.m

Set -logfile

mcc -e -R '-logfile,bar.txt' -v foo.m

Set -nojvm, -nodisplay, and -logfile with One Command

mcc -m -R '-logfile,bar.txt,-nojvm,-nodisplay' -v foo.m 

 MATLAB Runtime Startup Options

8-3



Using MATLAB Runtime User Data Interface
The MATLAB Runtime User Data Interface lets you easily access MATLAB Runtime data. This feature
allows keys and values to be shared between a MATLAB Runtime instance, the MATLAB code running
on that MATLAB Runtime instance, and the wrapper code that created the MATLAB Runtime
instance. Through calls to the MATLAB Runtime User Data interface API, you access MATLAB
Runtime data by creating a per-instance associative array of mxArrays, consisting of a mapping from
string keys to mxArray values. Reasons for doing this include, but are not limited to:

• You need to supply MATLAB Runtime profile information to a client running an application created
with the Parallel Computing Toolbox. You supply and change profile information on a per-
execution basis. For example, two instances of the same application may run simultaneously with
different profiles. For more information, see “Use Parallel Computing Toolbox in Deployed
Applications” on page 3-5.

• You want to initialize MATLAB Runtime with constant values that can be accessed by all your
MATLAB applications.

• You want to set up a global workspace — a global variable or variables that MATLAB and your
client can access.

• You want to store the state of any variable or group of variables.

MATLAB Functions
The API consists of two MATLAB functions callable from within deployed MATLAB code. Use the
MATLAB functions getmcruserdata and setmcruserdata from deployed MATLAB applications.
They are loaded by default only in applications created with MATLAB Compiler or MATLAB Compiler
SDK.

Tip getmcruserdata and setmcruserdata produce an Unknown function error when called in
MATLAB if the MCLMCR module cannot be located. You can avoid this situation by calling
isdeployed before calling getmcruserdata and setmcruserdata. For more information, see
isdeployed.

Set and Retrieve MATLAB Runtime Data for Shared Libraries
There are many possible scenarios for working with MATLAB Runtime data. The most general
scenario involves setting the MATLAB Runtime with specific data for later retrieval, as follows:

1 In your code, include the MATLAB Runtime header file and the library header generated by
MATLAB Compiler SDK.

2 Properly initialize your application using mclInitializeApplication.
3 After creating your input data, write or set it to the MATLAB Runtime with setmcruserdata.
4 After calling functions or performing other processing, retrieve the new MATLAB Runtime data

with getmcruserdata.
5 Free up storage memory in work areas by disposing of unneeded arrays with mxDestroyArray.
6 Shut down your application properly with mclTerminateApplication.

See Also
setmcruserdata | getmcruserdata

8 Work with the MATLAB Runtime

8-4



More About
• “Use Parallel Computing Toolbox in Deployed Applications” on page 3-5
• “Specify Parallel Computing Toolbox Profile in .NET Application” (MATLAB Compiler SDK)
• “Specify Parallel Computing Toolbox Profile in Java Application” (MATLAB Compiler SDK)

 Using MATLAB Runtime User Data Interface

8-5



Display MATLAB Runtime Initialization Messages
You can display a console message for end users that informs them when MATLAB Runtime
initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB runtime version x.xx)
• Customize the start-up or completion message with text of your choice. The default start-up

message will also display prior to displaying your customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:
mcc -R -startmsg Default start-up message Initializing

MATLAB Runtime version x.xx
mcc -R -startmsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for completion

mcc -R -startmsg,'user customized
message' -R -completemsg,'user
customized message"

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R before each option

mcc -R -startmsg,'user customized
message',-completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R only once

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB command window, place the comma inside the single quote.

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'
• If your initialization message has a space in it, call mcc from the system command window or

use !mcc from MATLAB.

8 Work with the MATLAB Runtime

8-6



Distributing Code to an End User

9



Distribute MATLAB Code Using the MATLAB Runtime
On target computers without MATLAB, install the MATLAB Runtime, if it is not already present on the
deployment machine.

MATLAB Runtime
MATLAB Runtime is an execution engine made up of the same shared libraries MATLAB uses to
enable execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime is available to download from the web to simplify the distribution of your
applications created using the MATLAB Compiler or the MATLAB Compiler SDK. Download the
MATLAB Runtime from the MATLAB Runtime product page or use the
compiler.runtime.download MATLAB function.

The MATLAB Runtime installer performs the following actions:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC).

MATLAB Runtime Prerequisites

1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of MATLAB Runtime that runs your application on the target computer must be the

same as the version of MATLAB Compiler or MATLAB Compiler SDK that built the deployed code,
at the same update level or newer.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer using one of the
compiler apps. The generated installer contains all files needed to run the standalone application or
shared library built with MATLAB Compiler or MATLAB Compiler SDK and properly lays them out on
a target system.

1 On the Packaging Options section of the compiler interface, select one or both of the following
options:

• Runtime downloaded from web — This option builds an installer that downloads the
MATLAB Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime installer in the
generated installer.

2 Click Package.
3 Distribute the installer to end users.

Install the MATLAB Runtime

For instructions on how to install the MATLAB Runtime on a system, see “Install and Configure
MATLAB Runtime” on page 7-3.

9 Distributing Code to an End User

9-2

https://www.mathworks.com/products/compiler/matlab-runtime.html


If you are given an installer containing the compiled artifacts, then MATLAB Runtime is installed
along with the application or shared library. If you are given just the raw binary files, you must
download and run the MATLAB Runtime installer.

Note On Windows, paths are set automatically by the installer. If you are running on a platform other
than Windows, you must either modify the path on the target machine or use a shell script to launch
the compiled application. Setting the paths enables your application executable to find MATLAB
Runtime. For more information on setting the path, see “Set MATLAB Runtime Path for Deployment”
on page 15-2.

 Distribute MATLAB Code Using the MATLAB Runtime

9-3





Compiler Commands

This chapter describes mcc, which is the command that invokes the compiler.

10



Compiler Tips
In this section...
“Deploying Applications That Call the Java Native Libraries” on page 10-2
“Using the VER Function in a Compiled MATLAB Application” on page 10-2

Deploying Applications That Call the Java Native Libraries
If your application interacts with Java, you need to specify the search path for native method libraries
by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from matlabroot/toolbox/local/librarypath.txt.
2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MATLAB Runtime library archive files are
installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library that your
application's Java code needs to load.

Using the VER Function in a Compiled MATLAB Application
When you use the VER function in a compiled MATLAB application, it will perform with the same
functionality as if you had called it from MATLAB. However, be aware that when using VER in a
compiled MATLAB application, only version information for toolboxes which the compiled application
uses will be displayed.

10 Compiler Commands

10-2



Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build standalone applications. You
can distribute standalone applications to users who do not have MATLAB software on their systems.

11



Deploying Standalone Applications
In this section...
“Compiling the Application” on page 11-2
“Testing the Application” on page 11-2
“Deploying the Application” on page 11-3
“Running the Application” on page 11-4

Compiling the Application
This example takes a MATLAB file, magicsquare.m, and creates a standalone application,
magicsquare.

1 Copy the file magicsquare.m from

matlabroot\extern\examples\compiler

to your work folder.
2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone application. The -v option
(verbose) displays the compilation steps throughout the process and helps identify other useful
information such as which third-party compiler is used and what environment variables are
referenced.

This command creates the standalone application called magicsquare and additional files. The
Windows platform appends the .exe extension to the name.

Testing the Application
These steps test your standalone application on your development machine.

Note Testing your application on your development machine is an important step to help ensure that
your application is compilable. To verify that your application compiled properly, you must test all
functionality that is available with the application. If you receive an error message similar to
Undefined function or Attempt to execute script script_name as a function, it is
likely that the application will not run properly on deployment machines. Most likely, your deployable
archive is missing some necessary functions. Use -a to add the missing functions to the archive and
recompile your code.

1 Update your path as described in “Set MATLAB Runtime Path for Deployment” on page 15-2.
2 Run the standalone application from the system prompt (shell prompt on UNIX® or DOS prompt

on Windows) by typing the application name.

magicsquare.exe 4                             (On Windows)
magicsquare 4                                 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare 4   (On Maci64)  

11 Standalone Applications

11-2



The results are:

ans =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to any target machine that
has the same operating system as the machine on which the application was compiled.

For example, if you want to deploy an application to a Windows machine, you must use MATLAB
Compiler to build the application on a Windows machine. If you want to deploy the same application
to a UNIX machine, you must use MATLAB Compiler on the same UNIX platform and completely
rebuild the application. To deploy an application to multiple platforms requires MATLAB and MATLAB
Compiler licenses on all the desired platforms.

Windows

Gather and package the following files and distribute them to the deployment machine.

Component Description
MATLAB Runtime installer Self-extracting MATLAB Runtime library utility; platform-

dependent file that must correspond to the end user's platform.
Run the mcrinstaller command to obtain name of executable.

magicsquare Application; magicsquare.exe for Windows

UNIX

Distribute and package your standalone application on UNIX by packaging the following files and
distributing them to the deployment machine.

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file that must

correspond to the end user's platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

Maci64

Distribute and package your standalone application on 64-bit Macintosh by copying, tarring, or
zipping as described in the following table.

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file that must

correspond to the end user's platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

 Deploying Standalone Applications

11-3



Component Description
magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo
• Distribute by tarring:

tar -cvf myapp.tar myapp.app 
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ..\myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run the application on their
machines.

Preparing Your Machines

Install the MATLAB Runtime by running the mcrinstaller command to obtain name of the
executable or binary. For more information on running the MATLAB Runtime installer utility and
modifying your system paths, see “MATLAB Runtime” on page 9-2.

Executing the Application

Run the magicsquare standalone application from the system prompt and provide a number
representing the size of the desired magic square, for example, 4.

magicsquare 4

The results are displayed as:

ans =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

Note Input arguments you pass to and from a system prompt are treated as string input, and you
need to consider that in your application.

Note Before executing your MATLAB Compiler generated executable, set the LD_PRELOAD
environment variable to \lib\libgcc_s.so.1.

11 Standalone Applications

11-4



Executing the Application on 64-Bit Macintosh (Maci64)

For 64-bit Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

 Deploying Standalone Applications

11-5





Troubleshooting

• “Testing Failures” on page 12-2
• “Investigate Deployed Application Failures” on page 12-4

12



Testing Failures
After you have successfully compiled your application, the next step is to test it on a development
machine and deploy it on a target machine. Typically, the target machine does not have a MATLAB
installation and requires MATLAB Runtime to be installed. A distribution includes all of the files that
are required by your application to run, which include the executable, deployable archive, and
MATLAB Runtime.

Test the application on the development machine by running the application against the MATLAB
Runtime shipped with MATLAB Compiler. This will verify that library dependencies are correct, that
the deployable archive can be extracted, and that all MATLAB code, MEX—files and support files
required by the application have been included in the archive. If you encounter errors testing your
application, the following questions may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application's execution by issuing !application-
name at the MATLAB prompt. If your application executes within MATLAB but not from outside, this
can indicate an issue with the system PATH variable.

Does the application begin execution and result in MATLAB or other errors?

Ensure that you included all necessary files when compiling your application (see the readme.txt
file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically included by MATLAB
Compiler; however, functions that are not explicitly called, for example through EVAL, need to be
included at compilation using the -a switch of the mcc command. Also, any support files
like .mat, .txt, or .html files need to be added to the archive with the -a switch. There is a
limitation on the functionality of MATLAB and associated toolboxes that can be compiled. Check the
documentation to see that the functions used in your application's MATLAB files are valid. Check the
file mccExcludedFiles.log on the development machine. This file lists all functions called from
your application that cannot be compiled.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an environment where multiple
versions of MATLAB are installed. Some older versions of MATLAB may not be fully compatible with
this architecture.

On Windows, ensure that the matlabroot\runtime\win64 of the version of MATLAB in which you
are compiling appears ahead of matlabroot\runtime\win64 of other versions of MATLAB installed
on the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH on Linux) match. Do
this by comparing the outputs of !printenv at the MATLAB prompt and printenv at the shell
prompt. Using this path allows you to use mcc from the operating system command line.

If you are testing a standalone executable or shared library and driver application, did you
install MATLAB Runtime?

All shared libraries required for your standalone executable or shared library are contained in
MATLAB Runtime. Installing MATLAB Runtime is required for any of the deployment targets.

12 Troubleshooting

12-2



Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrtX_XX.dll or mclmcrrtX_XX.so are
generally caused by an incorrect installation of MATLAB Runtime. For information on installing
MATLAB Runtime, see “Install and Configure MATLAB Runtime” on page 7-3.

It is also possible that MATLAB Runtime is installed correctly, but the PATH,LD_LIBRARY_PATH, or
DYLD_LIBRARY_PATH variable is set incorrectly. For information on setting environment variables,
see “Set MATLAB Runtime Path for Deployment” on page 15-2.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The MATLAB Runtime system is designed to accommodate different MATLAB
Runtime versions operating on the same machine. The folder structure is an important part of this
feature.

Does your system’s graphics card support the graphics application?

In situations where the existing hardware graphics card does not support the graphics application,
use software OpenGL. OpenGL libraries are visible for an application by appending
matlabroot/sys/opengl/lib/arch to the library path. For example, on Linux, enter the following
in a Bash shell:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:matlabroot/sys/opengl/lib/glnxa64

For more information on setting environment variables, see “Set MATLAB Runtime Path for
Deployment” on page 15-2.

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, MATLAB Runtime first looks on the system library path. If
OpenGL is not found there, it uses the LD_LIBRARY_PATH environment variable to locate the
libraries. If you are getting failures due to the OpenGL libraries not being found, you can append the
location of the OpenGL libraries to the LD_LIBRARY_PATH environment variable. For example, on
Linux, enter the following in a Bash shell:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:matlabroot/sys/opengl/lib/glnxa64

For more information on setting environment variables, see “Set MATLAB Runtime Path for
Deployment” on page 15-2.

 Testing Failures

12-3



Investigate Deployed Application Failures
After the application is working on the test machine, failures can be isolated in end-user deployment.
The end users of your application need to install the MATLAB Runtime on their machines. The
MATLAB Runtime includes a set of shared libraries that provides support for all features of MATLAB.
If your application fails during end-user deployment, the following questions in the column to the
right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy to end users, after
running successfully in a test environment. For a detailed list of guidelines for writing MATLAB code
that can be consumed by end users, see “Write Deployable MATLAB Code” on page 5-9

Is MATLAB Runtime installed?

All shared libraries required for your standalone executable or shared library are contained in
MATLAB Runtime. Installing MATLAB Runtime is required for any of the deployment targets. See
“Install and Configure MATLAB Runtime” on page 7-3 for complete information.

If running on Linux or macOS, did you update the dynamic library path after installing
MATLAB Runtime?

For information on setting the path on a deployment machine after installing MATLAB Runtime, see
“Set MATLAB Runtime Path for Deployment” on page 15-2.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrtX_XX.dll or mclmcrrtX_XX.so are
generally caused by an incorrect installation of MATLAB Runtime. For information on installing
MATLAB Runtime, see “Install and Configure MATLAB Runtime” on page 7-3.

It is also possible that MATLAB Runtime is installed correctly, but the PATH,LD_LIBRARY_PATH, or
DYLD_LIBRARY_PATH variable is set incorrectly. For information on setting environment variables,
see “Set MATLAB Runtime Path for Deployment” on page 15-2.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The MATLAB Runtime system is designed to accommodate different MATLAB
Runtime versions operating on the same machine. The folder structure is an important part of this
feature.

Do you have write access to the directory the application is installed in?

The first operation attempted by a compiled application is extraction of the deployable archive. If the
archive is not extracted, the application cannot access the compiled MATLAB code and the
application fails. If the application has write access to the installation folder, a subfolder named
application-name_mcr is created the first time the application is run. After this subfolder is
created, the application no longer needs write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, the executable needs to be redeployed, since it
also contains the embedded deployable archive. The deployable archive is keyed to a specific

12 Troubleshooting

12-4



compilation session. Every time an application is recompiled, a new, matched deployable archive is
created. Delete the existing application-name_mcr folder and run the new executable to ensure
that the application can expand the new deployable archive. As above, write access is required to
expand the new deployable archive.

 Investigate Deployed Application Failures

12-5





Limitations and Restrictions

• “Limitations” on page 13-2
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK ”

on page 13-7

13



Limitations

Packaging MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all toolboxes based on MATLAB
except:

• Most of the prebuilt graphical user interfaces included in MATLAB and its companion toolboxes.
• Functionality that cannot be called directly from the command line.

Compiled applications can run only on operating systems that run MATLAB. However, components
generated by the MATLAB Compiler cannot be used in MATLAB. Also, since MATLAB Runtime is
approximately the same size as MATLAB, applications built with MATLAB Compiler need specific
storage memory and RAM to operate. For the most up-to-date information about system
requirements, go to the MathWorks website.

Compiled applications can run only on the same platform on which they were developed, with the
following exceptions:

• Web apps, which can be deployed to MATLAB Web App Server™ running on any compatible
platform.

• C++ libraries compiled using the MATLAB Data API that do not contain platform-specific files.
• .NET Assemblies compiled using .NET Core that do not contain platform-specific files.
• Java packages that do not contain platform-specific files.
• Python packages that do not contain platform-specific files.

To see the full list of MATLAB Compiler limitations, visit: https://www.mathworks.com/
products/compiler/compiler_support.html.

Note For a list of functions not supported by the MATLAB Compiler See “Functions Not Supported
for Compilation by MATLAB Compiler and MATLAB Compiler SDK” on page 13-7.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it packages the MATLAB files that you
specify on the command line. In addition, it includes any other MATLAB files that your packaged
MATLAB files call. MATLAB Compiler uses a dependency analysis, which determines all the functions
on which the supplied MATLAB files, MEX-files, and P-files depend.

Note If the MATLAB file associated with a p-file is unavailable, the dependency analysis cannot
discover the p-file dependencies.

The dependency analysis cannot locate a function if the only place the function is called in your
MATLAB file is a call to the function in either of the following:

• Callback string
• Character array passed as an argument to the feval function or an ODE solver

13 Limitations and Restrictions

13-2

https://www.mathworks.com/support/requirements/matlab-system-requirements.html
https://www.mathworks.com/products/compiler/compiler_support.html
https://www.mathworks.com/products/compiler/compiler_support.html


Tip Dependent functions can also be hidden from the dependency analyzer in .mat files that are
loaded by compiled applications. Use the mcc -a argument or the %#function pragma to
identify .mat file classes or functions that are supported by the load command.

MATLAB Compiler does not look in these text character arrays for the names of functions to package.

Symptom

Your application runs, but an interactive user interface element, such as a push button, does not
work. The compiled application issues this error message:

An error occurred in the callback: change_colormap 
The error message caught was    : Reference to unknown function 
                change_colormap from FEVAL in stand-alone mode. 

Workaround

There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as character arrays
• Specifying callbacks with function handles
• Using the -a option

Specifying Callbacks as Character Arrays

Create a list of all the functions that are specified only in callback character arrays and pass these
functions using separate %#function pragma statements. This overrides the product dependency
analysis and instructs it to explicitly include the functions listed in the %#function pragmas.

For example, the call to the change_colormap function in the sample application my_test
illustrates this problem. To make sure MATLAB Compiler processes the change_colormap MATLAB
file, list the function name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
                 'Style', 'pushbutton',...
                 'Position',[10 10 133 25 ],...
                 'String', 'Make Black & White',...
                 'CallBack','change_colormap');

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example above, and
replace the last line with:

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB Programming
Fundamentals documentation.

 Limitations

13-3



Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing MATLAB file on
the MATLAB Compiler command line using the -a option.

Finding Missing Functions in a MATLAB File
To find functions in your application that need to be listed in a %#function pragma, search your
MATLAB file source code for text specified as callback character arrays or as arguments to the
feval, fminbnd, fminsearch, funm, and fzero functions or any ODE solvers.

To find text used as callback character array, search for the characters “Callback” or “fcn” in your
MATLAB file. This search finds all the Callback properties defined by graphics objects, such as
uicontrol and uimenu. In addition, it finds the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings might appear when you run a standalone application on the UNIX system.

To suppress the libjvm.so warning, set the dynamic library path properly for your platform. See
“Set MATLAB Runtime Path for Deployment” on page 15-2.

You can also use the compiler option -R -nojvm to set your application's nojvm run-time option, if
the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you get a run-time error.

Cannot Create the Output File
If you receive this error, there are several possible causes to consider.

Can't create the output file filename

Possible causes include:

• Lack of write permission for the folder where MATLAB Compiler is attempting to write the file
(most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting to write the file (most
likely the current working folder).

• If you are creating a standalone application and have been testing it, it is possible that a process is
running and is blocking MATLAB Compiler from overwriting it with a new version.

No MATLAB File Help for Packaged Functions
If you create a MATLAB file with self-documenting online help and package it, the results of following
command are unintelligible:

help filename

13 Limitations and Restrictions

13-4



Note For performance reasons, MATLAB file comments are stripped out before MATLAB Runtime
encryption.

No MATLAB Runtime Versioning on Mac OS X
The feature that allows you to install multiple versions of MATLAB Runtime on the same machine is
not supported on Mac OS X. When you receive a new version of MATLAB, you must recompile and
redeploy all your applications and components. Also, when you install a new version of MATLAB
Runtime on a target machine, you must delete the old version of MATLAB Runtime before installing
the new one. You can have only one version of MATLAB Runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler
Loading networks saved from older Deep Learning Toolbox versions requires some initialization
routines that are not deployable. Therefore, these networks cannot be deployed without first being
updated.

For example, deploying with Deep Learning Toolbox Version 5.0.1 (2006b) and MATLAB Compiler
Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn 
"layers{1}.initFcn" cannot be set to non-existing
 function "initwb". 
Error in ==> updatenet at 40 
Error in ==> network.loadobj at 10 

??? Undefined function or method 'sim' for input 
arguments of type 'struct'. 
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in
Packaged Mode
In compiled mode, only one argument can be present in a call to the MATLAB printdlg function (for
example, printdlg(gcf)).

You cannot receive an error when making at call to printdlg with multiple arguments. However,
when an application containing the multiple-argument call is packaged, the action fails with the
following error message:

Error using = => printdlg at 11 
PRINTDLG requires exactly one argument 

Packaging a Function with which Does Not Search Current Working
Folder
Using which, as in this example, does not cause the current working folder to be searched in
deployed applications. In addition, it may cause unpredictable behavior of the open function.

function pathtest 
which myFile.mat 
open('myFile.mat') 

 Limitations

13-5



Use one of the following solutions as an alternative:

• Use the pwd function to explicitly point to the file in the current folder, as follows:

open([pwd '/myFile.mat'])

• Rather than using the general open function, use load or other specialized functions for your
particular file type, as load explicitly checks for the file in the current folder. For example:

load myFile.mat

• Include your file in the Files required for your application to run area of the Compiler app,
the AdditionalFiles option using a compiler.build function, or the -a flag using mcc.

Restrictions on Using C++ SetData to Dynamically Resize an mwArray
You cannot use the C++ SetData method to dynamically resize mwArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SetData to increase the size of the array to a length of five elements.

Accepted File Types for Packaging
The valid and invalid file types for packaging using deployment apps are as follows:

Target
Application

Valid File Types Invalid File Types

Standalone
Application

MATLAB MEX files, MATLAB scripts,
MATLAB functions, and MATLAB class
files. These files must have a single
entry point.

Protected function files (.p files), Java
functions, COM or .NET components, and
data files.

Library
Compiler

MATLAB MEX files, MATLAB functions,
and MATLAB class files. These files must
have a single entry point.

MATLAB scripts, protected function files
(.p files), Java functions, COM or .NET
components, and data files.

MATLAB
Production
Server

MATLAB MEX files and MATLAB
functions. These files must have a single
entry point.

MATLAB scripts, MATLAB class files,
protected function files (.p files), Java
functions, COM or .NET components, and
data files. MATLAB class files can be
dependent files.

See Also

More About
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK”

on page 13-7

13 Limitations and Restrictions

13-6



Functions Not Supported for Compilation by MATLAB Compiler
and MATLAB Compiler SDK

Note Due to the number of active and ever-changing list of MathWorks products and functions, this
is not a complete list of functions that cannot be compiled. If you have a question as to whether a
specific MathWorks product's function is able to be compiled or not, the definitive source is that
product's documentation. For an updated list of such functions, see Support for MATLAB and
Toolboxes.

Functions that cannot be compiled fall into the following categories:

• Functions that print or report MATLAB code from a function, such as the MATLAB help function
or debug functions.

• Simulink functions, in general.
• Functions that require a command line, such as the MATLAB lookfor function.
• clc, home, and savepath, which do not do anything in deployed mode.

In addition, there are functions and programs that have been identified as non-deployable due to
licensing restrictions.

Only certain tools that allow run-time manipulation of figures are supported for compilation, for
example, adding legends, selecting data points, zooming in and out, etc.

mccExcludedFiles.log lists all the functions and files excluded by mcc. It is created after each
attempted build.

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK 

13-7

https://www.mathworks.com/products/compiler/compiler_support.html
https://www.mathworks.com/products/compiler/compiler_support.html


List of Unsupported Functions and Programs

add_block
add_line
checkcode
close_system
colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromWsdl
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
delete_block
delete_line
depfun
doc
echo
edit
fields
figure_palette
get_param
help
home
inmem
keyboard
linkdata
linmod
matlab.unittest.TestSuite.fromProject
mislocked
mlock
more
munlock

13 Limitations and Restrictions

13-8



new_system
open
open_system
pack
pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
quit
rehash
restoredefaultpath
run
segment
set_param
sldebug
type

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK 

13-9





Package to Docker

14



Package MATLAB Standalone Applications into Docker Images
Supported Platform: Linux only.

This example shows how to package a MATLAB standalone application into a Docker image.

This option is best for developers who want to distribute an application in a standardized format with
all dependencies included, or to run batch jobs in an orchestrator. To create a microservice Docker
image that provides an HTTP/HTTPS endpoint, see “Create Microservice Docker Image” (MATLAB
Compiler SDK).

Prerequisites
1 Verify that you have Docker installed on your Linux machine by typing docker in the terminal. If

you do not have Docker installed, you can follow the instructions on the Docker website to install
and set up Docker.

https://docs.docker.com/engine/install/
2 Test your Docker installation by typing the following at the system terminal:

docker run hello-world

If your Docker installation is working correctly, you see the following message:

Hello from Docker!
This message shows that your installation appears to be working correctly.

3 Verify that the MATLAB Runtime installer is available on your machine. You can verify its
existence by executing the compiler.runtime.download function at the MATLAB command
prompt. If there is an existing installer on the machine, the function returns its location.
Otherwise, it downloads the MATLAB Runtime installer matching the version and update level of
MATLAB from where the command is executed.

If the computer you are using is not connected to the Internet, you need to download the
MATLAB Runtime installer from a computer that is connected to the Internet. After downloading
the MATLAB Runtime installer, you need to transfer the installer to the computer that is not
connected to the Internet. You can download the installer from the MathWorks website.

https://www.mathworks.com/products/compiler/matlab-runtime.html

Create Function in MATLAB
Write a MATLAB function called mymagic and save it with the file name mymagic.m.

function mymagic(x)
y = magic(x);
disp(y)

Test the function at the MATLAB command prompt.

mymagic(5)

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22

14 Package to Docker

14-2

https://docs.docker.com/engine/install/
https://www.mathworks.com/products/compiler/matlab-runtime.html


    10    12    19    21     3
    11    18    25     2     9

Create Standalone Application
Make the mymagic function into a standalone application using the
compiler.build.standaloneApplication function.

res = compiler.build.standaloneApplication('mymagic.m', 'TreatInputsAsNumeric', true)

res = 
  Results with properties:

    BuildType: 'standaloneApplication'
        Files: {3×1 cell}
      Options: [1×1 compiler.build.StandaloneApplicationOptions]

Once the build is complete, the function creates a folder named mymagicstandaloneApplication
in your current directory to store the standalone application. The Results object res returned at the
MATLAB command prompt contains information about the build.

Package Standalone Application into Docker Image
Create DockerOptions Object

Prior to creating a Docker image, create a DockerOptions object using the
compiler.package.DockerOptions function and pass the Results object res and an image
name mymagic-standalone-app as input arguments. The compiler.package.DockerOptions
function lets you customize Docker image packaging.

opts = compiler.package.DockerOptions(res,'ImageName','mymagic-standalone-app')

opts = 
  DockerOptions with properties:

            EntryPoint: 'mymagic'
    ExecuteDockerBuild: on
             ImageName: 'mymagic-standalone-app'
         DockerContext: './mymagic-standalone-appdocker'

Create Docker Image

Create a Docker image using the compiler.package.docker function and pass the Results
object res and the DockerOptions object opts as input arguments.

compiler.package.docker(res, 'Options', opts)

Generating Runtime Image
Cleaning MATLAB Runtime installer location. It may take several minutes...
Copying MATLAB Runtime installer. It may take several minutes...
...
...
...
Successfully built 6501fa2bc057
Successfully tagged mymagic-standalone-app:latest

 Package MATLAB Standalone Applications into Docker Images

14-3



DOCKER CONTEXT LOCATION:

/home/user/MATLAB/work/mymagic-standalone-appdocker

SAMPLE DOCKER RUN COMMAND:

docker run --rm -e "DISPLAY=:0" -v /tmp/.X11-unix:/tmp/.X11-unix mymagic-standalone-app

Once packaging is complete, the function creates a folder named mymagic-standalone-
appdocker in your current directory. This folder is the Docker context and contains the Dockerfile.
The compiler.package.docker function also returns the location of the Docker context and a
sample Docker run command. You can use the sample Docker run command to test whether your
image executes correctly.

During the packaging process, the necessary bits for MATLAB Runtime are packaged as a parent
Docker image and the standalone application is packaged as a child Docker image.

Test Docker Image
Open a Linux terminal and navigate to the Docker context folder. Verify that the mymagic-
standalone-app Docker image is listed in your list of Docker images.

$ docker images

REPOSITORY                                      TAG           IMAGE ID            CREATED             SIZE
mymagic-standalone-app                          latest        6501fa2bc057        23 seconds ago      1.03GB
matlabruntime/r2022a/update0/4000000000000000   latest        c6eb5ba4ae69        24 hours ago        1.03GB

After verifying that the mymagic-standalone-app Docker image is listed in your list of Docker
images, execute the sample run command with the input argument 5:

$ docker run --rm -e "DISPLAY=:0" -v /tmp/.X11-unix:/tmp/.X11-unix mymagic-
standalone-app 5

No protocol specified

out =

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

The standalone application is packaged and can now be run as a Docker image.

Note When running applications that generate plots or graphics, execute the xhost program with
the + option prior to running your Docker image.

xhost +

The xhost program controls access to the X display server, thereby enabling plots and graphics to be
displayed. The + option indicates that everyone has access to the X display server. If you run the
xhost program with the + option prior to running applications that do not generate plots or graphics,
the message No protocol specified is no longer displayed.

14 Package to Docker

14-4



Share Docker Image
You can share your Docker image in various ways.

• Push your image to the Docker's central registry DockerHub, or to your private registry. This is
the most common workflow.

• Save your image as a tar archive and share it with others. This workflow is suitable for immediate
testing.

For details about pushing your image to Docker's central registry or your private registry, consult the
Docker documentation.

Save Docker Image as Tar Archive

To save your Docker image as a tar archive, open a Linux terminal, navigate to the Docker context
folder, and type the following.

$ docker save mymagic-standalone-app -o mymagic-standalone-app.tar

A file named mymagic-standalone-app.tar is created in your current folder. Set the appropriate
permissions using chmod prior to sharing the tarball with other users.

Load Docker Image from Tar Archive

Load the image contained in the tarball on the end-user's machine and then run it.

$ docker load --input mymagic-standalone-app.tar

Verify that the image is loaded.

$ docker images

Run Docker Image

$ xhost +
$ docker run --rm -e "DISPLAY=:0" -v /tmp/.X11-unix:/tmp/.X11-unix mymagic-standalone-app 5

See Also
compiler.package.docker | compiler.package.DockerOptions |
compiler.build.standaloneApplication | compiler.runtime.download

Related Examples
• “Create Microservice Docker Image” (MATLAB Compiler SDK)

 Package MATLAB Standalone Applications into Docker Images

14-5





Reference Information

• “Set MATLAB Runtime Path for Deployment” on page 15-2
• “MATLAB Compiler Licensing” on page 15-6
• “Deployment Product Terms” on page 15-7

15



Set MATLAB Runtime Path for Deployment
In this section...
“Environment Variables and MATLAB Runtime Directories” on page 15-2
“Windows” on page 15-3
“Linux” on page 15-3
“macOS” on page 15-4
“Set Path Permanently on UNIX” on page 15-4

Applications generated with MATLAB Compiler or MATLAB Compiler SDK use the system library path
to locate the MATLAB Runtime libraries. After you install MATLAB Runtime, add the run-time
directories to the system library path according to the instructions for your operating system and
shell environment. Alternatively, pass the location of MATLAB Runtime as an input to the associated
shell script (run_application.sh).

Note

• Save the value of your current library path as a backup before modifying it.
• Your library path may contain multiple versions of MATLAB Runtime. Applications launched

without using the shell script use the first version listed in the path.
• If you are using a network install of MATLAB Runtime, see “Run Applications Using a Network

Installation of MATLAB Runtime” on page 7-9.

Environment Variables and MATLAB Runtime Directories
Operating
System

Environment
Variable

Directories

Windows PATH <MATLAB_RUNTIME_INSTALL_DIR>\runtime\<arch>
Linux LD_LIBRARY_PATH <MATLAB_RUNTIME_INSTALL_DIR>/runtime/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/glnxa64

<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/glnxa64
macOS DYLD_LIBRARY_PAT

H
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/bin/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/maci64

<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/maci64

15 Reference Information

15-2



Windows
The MATLAB Runtime installer for Windows automatically sets the library path during installation. If
you do not use the installer, complete the following steps to set the PATH environment variable
permanently.

1 Run C:\Windows\System32\SystemPropertiesAdvanced.exe and click the Environment
Variables... button.

2 Select the system variable Path and click Edit....

Note If you do not have administrator rights on the machine, select the user variable Path
instead of the system variable.

3 Click New and add the directory <MATLAB_RUNTIME_INSTALL_DIR>\runtime\<arch>. For
example, if you are using MATLAB Runtime R2022a located in the default installation directory
on 64-bit Windows, add C:\Program Files\MATLAB\MATLAB Runtime\v912\runtime
\win64.

4 Click OK to apply the change.

Linux
For information on setting environment variables in shells other than Bash, see your shell
documentation.

Bash Shell

1 Display the current value of LD_LIBRARY_PATH in the terminal.

echo $LD_LIBRARY_PATH
2 Append the MATLAB Runtime directories to the LD_LIBRARY_PATH variable for the current

session.

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/glnxa64:\
<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/glnxa64"

Note If you require Mesa Software OpenGL® rendering to resolve low level graphics issues, add
the directory <MATLAB_RUNTIME_INSTALL_DIR>/sys/opengl/lib/glnxa64 to the path. For
details, see “Resolving Low-Level Graphics Issues”.

For example, if you are using MATLAB Runtime R2022a located in the default installation
directory, use the following command:

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}\
/usr/local/MATLAB/MATLAB_Runtime/v912/runtime/glnxa64:\
/usr/local/MATLAB/MATLAB_Runtime/v912/bin/glnxa64:\
/usr/local/MATLAB/MATLAB_Runtime/v912/sys/os/glnxa64:\
/usr/local/MATLAB/MATLAB_Runtime/v912/extern/bin/glnxa64"

3 Display the new value of LD_LIBRARY_PATH to ensure the path is correct.

 Set MATLAB Runtime Path for Deployment

15-3



echo $LD_LIBRARY_PATH
4 Type ldd --version to check your version of GNU® C library (glibc). If the version displayed

is 2.17 or lower, add <MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64/
glibc-2.17_shim.so to the LD_PRELOAD environment variable using the following command:

export LD_PRELOAD="${LD_PRELOAD:+${LD_PRELOAD}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/glnxa64/glibc-2.17_shim.so"

macOS
1 Display the current value of DYLD_LIBRARY_PATH in the terminal.

echo $DYLD_LIBRARY_PATH
2 Append the MATLAB Runtime directories to the DYLD_LIBRARY_PATH variable for the current

session.

export DYLD_LIBRARY_PATH="${DYLD_LIBRARY_PATH:+${DYLD_LIBRARY_PATH}:}\
<MATLAB_RUNTIME_INSTALL_DIR>/runtime/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/bin/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/sys/os/maci64:\
<MATLAB_RUNTIME_INSTALL_DIR>/extern/bin/maci64"

For example, if you are using MATLAB Runtime R2022a located in the default installation
directory, use the following command:

export DYLD_LIBRARY_PATH="${DYLD_LIBRARY_PATH:+${DYLD_LIBRARY_PATH}:}\
/Applications/MATLAB/MATLAB_Runtime/v912/runtime/maci64:\
/Applications/MATLAB/MATLAB_Runtime/v912/bin/maci64:\
/Applications/MATLAB/MATLAB_Runtime/v912/sys/os/maci64:\
/Applications/MATLAB/MATLAB_Runtime/v912/extern/bin/maci64"

3 Display the value of DYLD_LIBRARY_PATH to ensure the path is correct.

echo $DYLD_LIBRARY_PATH

Set Path Permanently on UNIX

Caution The MATLAB Runtime libraries may conflict with other applications that use the library
path. In this case, set the path only for the current session, or run MATLAB Compiler applications
using the generated shell script.

To set an environment variable at login on Linux or macOS, append the export command to the shell
configuration file ~/.bash_profile in a Bash shell, or ~/.zprofile in a Zsh shell.

To determine your current shell environment, type echo $SHELL.

See Also

More About
• “Install and Configure MATLAB Runtime” on page 7-3
• “Run Applications Using a Network Installation of MATLAB Runtime” on page 7-9

15 Reference Information

15-4



• “Change Environment Variable for Shell Command”

 Set MATLAB Runtime Path for Deployment

15-5



MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt (MATLAB mode) or the DOS/
UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This has different behavior in MATLAB mode and
standalone mode.

Running MATLAB Compiler in MATLAB Mode

When you run MATLAB Compiler from “inside” of the MATLAB environment, that is, you run mcc
from the MATLAB command prompt, you hold the MATLAB Compiler license as long as MATLAB
remains open. To give up the MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode

If you run MATLAB Compiler from a DOS or UNIX prompt, you are running from “outside” of
MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB Compiler is running
• Gives the user a dedicated 30-minute time allotment during which the user has complete

ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute time period as the sole
owner of the MATLAB Compiler license. Anytime during the 30-minute segment, if the same user
requests MATLAB Compiler , the user gets a new 30-minute allotment. When the 30-minute interval
has elapsed, if a different user requests MATLAB Compiler , the new user gets the next 30-minute
interval.

When a user requests MATLAB Compiler and a license is not available, the user receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are available, the user gets
the license and no message is displayed. The best way to guarantee that all MATLAB Compiler users
have constant access to MATLAB Compiler is to have an adequate supply of licenses for your users.

15 Reference Information

15-6



Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively integrated into
a Microsoft Excel application. Add-ins are front-ends for COM components, usually written in some
form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that is used to
develop software applications. Typically an API is used to provide access to specific functionality. See
MWArray.

Application — An end user-system into which a deployed functions or solution is ultimately
integrated. Typically, the end goal for the deployment customer is integration of a deployed MATLAB
function into a larger enterprise environment application. The deployment products prepare the
MATLAB function for integration by wrapping MATLAB code with enterprise-compatible source code,
such as C, C++, C# (.NET), F#, and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented languages, that
is a prototype for an object in an object-oriented language. It is analogous to a derived type in a
procedural language. A class is a set of objects which share a common structure and behavior.
Classes relate in a class hierarchy. One class is a specialization (a subclass) of another (one of its
superclasses) or comprises other classes. Some classes use other classes in a client-server
relationship. Abstract classes have no members, and concrete classes have one or more members.
Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various computing
environments. For example, when MATLAB code is compiled into a Java package, a Java wrapper
provides Java code that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a Microsoft Excel
add-in. In MATLAB Compiler SDK, an executable component, to be integrated with Microsoft COM
applications.

Console application — Any application that is executed from a system command prompt window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB deployment
customer is using type-safe interfaces, data marshaling—as from mathematical data types to
MathWorks data types such as represented by the MWArray API—must be performed manually, often
at great cost.

 Deployment Product Terms

15-7



Deploy — The act of integrating MATLAB code into a larger-scale computing environment, usually to
an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary generated by
MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES) cryptosystem. See
“Additional Details” on page 5-7.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for Windows.
Using DLLs is much preferred over the previous technology of static (or non-dynamic) libraries,
which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and sometimes
called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold data.
Properties allow users to access class variables as if they were accessing member fields directly,
while actually implementing that access through a class method.

I

Integration — Combining deployed MATLAB code's functionality with functionality that currently
exists in an enterprise application. For example, a customer creates a mathematical model to forecast
trends in certain commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance) the deployed financial
model must be integrated with existing C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server software, see
MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many files into
one. Software developers use JARs to distribute Java applications or libraries, in the form of classes
and associated metadata and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into MATLAB
software.

JDK — The Java Development Kit is a product which provides the environment required for
programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required to run Java
programs. It comprises the Java Virtual Machine, the Java platform core classes, and supporting files.

15 Reference Information

15-8



It does not include the compiler, debugger, or other tools present in the JDK™. The JRE™ is the
smallest set of executables and files that constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when added
vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB uses these
libraries to enable the execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production Server
software, you have the option of specifying more than one MATLAB Runtime session, using the --
num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients are
applications written in a language supported by MATLAB Production Server that call deployed
functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production Server
containing at least one server and one client. Each configuration of the software usually contains a
unique set of values in the server configuration file, main_config (MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created using the mps-
new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB programs
within your production systems, enabling you to incorporate numerical analytics in enterprise
applications. When you use this software, web, database, and enterprise applications connect to
MATLAB programs running on MATLAB Production Server via a lightweight client library, isolating
the MATLAB programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source files into
standalone applications or shared libraries. For more information, see the mbuild function reference
page.

mcc — The MATLAB command that invokes the compiler. It is the command-line equivalent of using
the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative information to
a .NET class. For example, in the context of client programming with MATLAB Production Server
software, you specify method attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of standard
mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface (API) for exchanging
data between your application and MATLAB. Using MWArray, you marshal data from traditional
mathematical types to a form that can be processed and understood by MATLAB data type mxArray.

 Deployment Product Terms

15-9



There are different implementations of the MWArray proxy for each application programming
language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB Runtime and
other files, into an installer that can be distributed to others. The compiler apps place the installer in
the for_redistribution subfolder. In addition to the installer, the compiler apps generate a
number of lose artifacts that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production Server
software. Servers created with the software do not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is scheduled on a pool, or
group, of available threads. The server configuration file option --num-threads sets the size of that
pool (the number of available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error messages
relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are written to
automate repetitive operations through computer processing. Enterprise system applications usually
consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface to
something else. For example, MWArray is a proxy for programmers who need to access the
underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast loading into
Windows applications. Dynamic-link libraries (DLLs) are Microsoft's implementation of the shared
library concept for Microsoft Windows.

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create a shared
MATLAB Runtime instance, also known as a singleton. When you invoke MATLAB Compiler with the -
S option through the compiler (using either mcc or a compiler app), a single MATLAB Runtime
instance is created for each COM component or Java package in an application. You reuse this
instance by sharing it among all subsequent class instances. Such sharing results in more efficient
memory usage and eliminates the MATLAB Runtime startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET assemblies.
MATLAB Compiler creates singletons by default for the COM components used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions often carry
state in the form of variable values. The MATLAB workspace itself also maintains information about
global variables and path settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that use such functions.

15 Reference Information

15-10



Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access using
textual field designators. Fields are data containers that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as Microsoft
Visual Studio®.

T

Thread — A portion of a program that can run independently of and concurrently with other portions
of the program. See pool for additional information on managing the number of processing threads
available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the MWArray type
from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file used to
distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag libraries, and static
web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web. Using the
WebFigures feature, you display MATLAB figures on a website for graphical manipulation by end
users. This enables them to use their graphical applications from anywhere on the web, without the
need to download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication Foundation™ is an
application programming interface in the .NET Framework for building connected, service-oriented,
web-centric applications. WCF is designed in accordance with service oriented architecture
principles to support distributed computing where services are consumed by client applications.

 Deployment Product Terms

15-11





Functions

16



%#exclude
Ignore a file or function dependency during dependency analysis while executing the mcc command

Syntax
%#exclude fileOrFunction1 [fileOrFunction2 ... fileOrFunctionN]

Description
%#exclude fileOrFunction1 [fileOrFunction2 ... fileOrFunctionN] pragma informs
the mcc command that the specified file(s) or function(s) need to be excluded from dependency
analysis during compilation.

Examples

Using %#exclude Within a MATLAB Function

Create a MATLAB function named testExclusion that includes a %#exclude pragma to determine
which files are included and which ones are excluded while executing the mcc command with various
options.

function testExclusion()

%#exclude foo.mat
load foo.mat
load bar.mat

%#function foo.txt
fid = fopen('foo.txt');
fclose(fid)

• Executing mcc -m testExclusion.m results in:

• bar.mat and foo.txt being included during dependency analysis
• foo.mat being excluded

• Executing mcc -m testExclusion.m -X results in:

• foo.txt being included during dependency analysis
• bar.mat and foo.mat being excluded

• Executing mcc -m testExclusion.m -X -a foo.mat results in:

• foo.mat and foo.txt being included during dependency analysis
• bar.mat being excluded

The -a option in the mcc command is used to add files. The %#function pragma is used to inform
the mcc command that the specified function(s) should be included in the compilation.

16 Functions

16-2



In the last case, -a option takes precedence over the %#exclude pragma.

See Also
mcc

Introduced in R2020a

 %#exclude

16-3



%#function
Pragma to help MATLAB Compiler locate functions called through feval, eval, Handle Graphics
callback, or objects loaded from MAT-files

Syntax
%#function function1 [function2 ... functionN]

%#function object_constructor

Description
The %#function pragma informs MATLAB Compiler that the specified function(s) will be called
through an feval, eval,Handle Graphics® callback, or objects loaded from MAT-files.

Use the %#function pragma in standalone applications to inform MATLAB Compiler that the
specified function(s) should be included in the compilation, whether or not MATLAB Compiler's
dependency analysis detects the function(s). It is also possible to include objects by specifying the
object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and compile all
MATLAB files used in your application. This pragma adds the top-level function as well as all the local
functions in the file to the compilation.

Examples
Example 1

 function foo 
   %#function bar 
       
      feval('bar'); 
    
   end %function foo 

By implementing this example, MATLAB Compiler is notified that function bar will be included in the
compilation and is called through feval.

Example 2

function foo 
   %#function bar foobar 
    
      feval('bar'); 
      feval('foobar'); 
    
   end %function foo 

In this example, multiple functions (bar and foobar) are included in the compilation and are called
through feval.

16 Functions

16-4



Example 3

function foo 
   %#function ClassificationSVM 
    
      load('svm-classifier.mat'); 
      num_dimensions = size(svm_model.PredictorNames, 2); 
    
    end %function foo 

In this example, an object from the class ClassificationSVM is loaded from a MAT-file. For more
information, see “MATLAB Data Files in Compiled Applications”.

Introduced before R2006a

 %#function

16-5



applicationCompiler
Build and package functions into standalone applications

Syntax
applicationCompiler
applicationCompiler project_name

Description
applicationCompiler opens the MATLAB standalone compiler for the creation of a new compiler
project. For more information on the Application Compiler app, see Application Compiler.

applicationCompiler project_name opens the MATLAB standalone compiler app with the
project preloaded.

Examples

Create a New Standalone Application Project

Open the application compiler to create a new project.

applicationCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved MATLAB Compiler project. The project must be on the current
path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use the
compiler.build.standaloneApplication function or the mcc command, and to package and
create an installer, use the compiler.package.installer function.

See Also
deploytool | mcc | compiler.package.installer

Introduced in R2013b

16 Functions

16-6



compiler.build.Results
Compiler build results object

Description
A compiler.build.Results object contains information about the build type, generated files,
support packages, and build options of a compiler.build function.

All Results properties are read-only. You can use dot notation to query these properties.

For information on results from compiling C/C++ shared libraries, .NET assemblies, COM
components, Java packages, Python packages, MATLAB Production Server deployable archives, or
Excel add-ins for MATLAB Production Server, see compiler.build.Results for MATLAB Compiler
SDK.

Creation
There are several ways to create a compiler.build.Results object.

• Create a standalone application using compiler.build.standaloneApplication (example on
page 16-9).

• Create a standalone Windows application using
compiler.build.standaloneWindowsApplication (example on page 16-9).

• Create a web app archive using compiler.build.webAppArchive (example on page 16-9).
• Create an Excel add-in using compiler.build.excelAddIn (example on page 16-10).

Properties
BuildType — Build type
'standaloneApplication' | 'standaloneWindowsApplication' | 'webAppArchive' |
'excelAddIn'

This property is read-only.

The build type of the compiler.build function used to generate the results, specified as a
character vector:

compiler.build Function Build Type
compiler.build.standaloneApplication 'standaloneApplication'
compiler.build.standaloneWindowsApplic
ation

'standaloneWindowsApplication'

compiler.build.webAppArchive 'webAppArchive'
compiler.build.excelAddIn 'excelAddIn'

Data Types: char

 compiler.build.Results

16-7



Files — Paths to compiled files
cell array of character vectors

This property is read-only.

Paths to the compiled files of the compiler.build function used to generate the results, specified
as a cell array of character vectors.

Build Type Files
'standaloneApplication' 2×1 cell array

    {'path\to\ExecutableName.exe'}    
    {'path\to\readme.txt'}

'standaloneWindowsApplication' 3×1 cell array

    {'path\to\ExecutableName.exe'}
    {'path\to\splash.png'}
    {'path\to\readme.txt'}

'webAppArchive' 1×1 cell array

    {'path\to\ArchiveName.ctf'}

'excelAddIn' 2×1 or 4×1 cell array

    {'path\to\AddInName_AddInVersion.dll'}
    {'path\to\AddInName.bas'}
    {'path\to\AddInName.xla'}
    {'path\to\GettingStarted.html'}

Note The files AddInName.bas and
AddInName.xla are included only if you enable
the 'GenerateVisualBasicFile' option.

Example: {'D:\Documents\MATLAB\work\MagicSquarewebAppArchive\MagicSquare.ctf'}
Data Types: cell

IncludedSupportPackages — Support packages
cell array of character vectors

This property is read-only.

Support packages included in the generated component, specified as a cell array of character vectors.

Options — Build options
StandaloneApplicationOptions | WebAppArchiveOptions | ExcelAddInOptions

This property is read-only.

Build options of the compiler.build function used to generate the results, specified as an options
object of the corresponding build type.

Build Type Options
'standaloneApplication' StandaloneApplicationOptions

16 Functions

16-8



Build Type Options
'standaloneWindowsApplication' StandaloneApplicationOptions
'webAppArchive' WebAppArchiveOptions
'excelAddIn' ExcelAddInOptions

Examples

Get Build Information from Standalone Application

Create a standalone application and save information about the build type, generated files, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.standaloneApplication('magicsquare.m')

results = 

              BuildType: 'standaloneApplication'
                  Files: {2×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.StandaloneApplicationOptions]

The Files property contains the paths to the magicsquare standalone executable and readme.txt
files.

Get Build Information from Standalone Windows Application

Create a standalone Windows application on a Windows system and save information about the build
type, generated files, included support packages, and build options to a compiler.build.Results
object.

Compile using the file Mortgage.mlapp located in matlabroot\examples\matlab\main.
results = compiler.build.standaloneWindowsApplication('Mortgage.mlapp')

results = 

  Results with properties:

              BuildType: 'standaloneWindowsApplication'
                  Files: {3×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.StandaloneApplicationOptions]

The Files property contains the paths to the following files:

• Mortgage.exe
• splash.png
• readme.txt

 compiler.build.Results

16-9



Get Build Information from Web App Archive

Create a web app archive and save information about the build type, archive file, included support
packages, and build options to a compiler.build.Results object.

Compile using the file Mortgage.mlapp located in matlabroot\examples\matlab\main.
results = compiler.build.webAppArchive('Mortgage.mlapp')

results = 

  Results with properties:

              BuildType: 'webAppArchive'
                  Files: {'D:\Documents\MATLAB\work\MortgagewebAppArchive\Mortgage.ctf'}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.WebAppArchiveOptions]

The Files property contains the path to the deployable archive file Mortgage.ctf.

Get Build Information from Excel Add-In

Create an Excel add-in and save information about the build type, generated files, included support
packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.excelAddIn('magicsquare.m')

results = 

  Results with properties:

              BuildType: 'excelAddIn'
                  Files: {2×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.ExcelAddInOptions]

The Files property contains the paths to the following compiled files:

• magicsquare_1_0.dll
• GettingStarted.html

Note The files magicsquare.bas and magicsquare.xla are included in Files only if you enable
the 'GenerateVisualBasicFile' option in the build command.

See Also
compiler.build.standaloneApplication |
compiler.build.standaloneWindowsApplication | compiler.build.webAppArchive |
compiler.build.excelAddIn

Introduced in R2020b

16 Functions

16-10



compiler.build.standaloneApplication
Create a standalone application for deployment outside MATLAB

Syntax
compiler.build.standaloneApplication(AppFile)
compiler.build.standaloneApplication(AppFile,Name,Value)
compiler.build.standaloneApplication(opts)
results = compiler.build.standaloneApplication( ___ )

Description
compiler.build.standaloneApplication(AppFile) creates a deployable standalone
application using a MATLAB function, class, or app specified by AppFile. The executable type is
determined by your operating system. The generated executable does not include MATLAB Runtime
or an installer.

compiler.build.standaloneApplication(AppFile,Name,Value) creates a standalone
application with additional options specified using one or more name-value arguments. Options
include the executable name, help text, and icon image.

compiler.build.standaloneApplication(opts) creates a standalone application with
additional options specified using a compiler.build.StandaloneApplicationOptions object
opts. You cannot specify any other options using name-value arguments.

results = compiler.build.standaloneApplication( ___ ) returns build information as a
compiler.build.Results object using any of the argument combinations in previous syntaxes.
The build information consists of the build type, paths to the compiled files, and build options.

Examples

Create Standalone Application

Create a standalone application using a function file that generates a magic square.

In MATLAB, locate the MATLAB code that you want to deploy as a standalone application. For this
example, compile using the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a standalone application using the compiler.build.standaloneApplication command.
compiler.build.standaloneApplication(appFile);

This syntax generates the following files within a folder named
magicsquarestandaloneApplication in your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the
application.

 compiler.build.standaloneApplication

16-11



• magicsquare.exe or magicsquare — Executable file that has the .exe extension if compiled
on a Windows system, or no extension if compiled on Linux or macOS systems.

• run_magicsquare.sh — Shell script file that sets the library path and executes the application.
This file is only generated on Linux and macOS systems.

• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not
included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations on page 13-2.

• readme.txt — Text file that contains information on deployment prerequisites and the list of files
to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

• unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

To run magicsquare from MATLAB with the input argument 4, navigate to the
magicsquarestandaloneApplication folder and execute one of the following commands based
on your operating system:

Operating System Test in MATLAB Command Window
Windows !magicsquare 4
macOS system(['./run_magicsquare.sh

',matlabroot,' 4']);
Linux !./magicsquare 4

The application outputs a 4-by-4 magic square.

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

To run your standalone application outside of MATLAB, see “Run Standalone Application” on page 1-
10.

Customize Standalone Application

Create a standalone application and customize it using name-value arguments.

Write a MATLAB function that uses a subfunction to compute the diagonal components of a magic
square. Save the functions to files named mymagicdiag.m and mydiag.m.

function out = mymagicdiag(in)
X = magic(in);
out = mydiag(X);

function out = mydiag(in)
out = [diag(in)]';

Build the standalone application using mymagicdiag.m. Use name-value pair arguments to specify
the executable name, add the mydiag.m function file, and interpret command line inputs as numeric
doubles.

16 Functions

16-12



compiler.build.standaloneApplication('mymagicdiag.m',...
    'ExecutableName','MagicDiagApp',...
    'AdditionalFiles','mydiag.m',...
    'TreatInputsAsNumeric','On')

The function generates the following files within a folder named
MagicDiagAppstandaloneApplication in your current working directory:

• includedSupportPackages.txt
• MagicDiagApp.exe or MagicDiagApp
• run_MagicDiagApp.sh (only on Linux and macOS systems)
• mccExcludedFiles.log
• readme.txt
• requiredMCRProducts.txt

To run MagicDiagApp from MATLAB with the input argument 4, navigate to the
MagicDiagAppstandaloneApplication folder and execute one of the following commands based
on your operating system:

Operating System Test in MATLAB Command Window
Windows !MagicDiagApp 4
macOS system(['./run_MagicDiagApp.sh

',matlabroot,' 4']);
Linux !./MagicDiagApp 4

The application outputs the diagonal entries of a 4-by-4 magic square.

    16     11     6    1

Create Multiple Applications Using Options Object

Create multiple standalone applications on a Windows system using a
compiler.build.StandaloneApplicationOptions object.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Create a StandaloneApplicationOptions object using appFile. Use name-value arguments to
specify a common output directory, interpret command line inputs as numeric doubles, and display
progress information during the build process.
opts = compiler.build.StandaloneApplicationOptions(appFile,...
    'OutputDir','D:\Documents\MATLAB\work\MagicBatch',...
    'TreatInputsAsNumeric','On',...
    'Verbose','On')

opts =

  StandaloneApplicationOptions with properties:

            CustomHelpTextFile: ''
              EmbedArchive: on

 compiler.build.standaloneApplication

16-13



            ExecutableIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
            ExecutableName: 'magicsquare'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '1.0.0.0'
                   AppFile: 'C:\Program Files\MATLAB\R2022a\extern\examples\compiler\magicsquare.m'
      TreatInputsAsNumeric: on
           AdditionalFiles: {}
       AutoDetectDataFiles: on
           SupportPackages: {'autodetect'}
                   Verbose: on
                 OutputDir: 'D:\Documents\MATLAB\work\MagicBatch'

Build a standalone application by passing the StandaloneApplicationOptions object as an input
to the build function.
compiler.build.standaloneApplication(opts);

To create a new standalone application using the function file example2.m with the same options,
use dot notation to modify the AppFile of the existing StandaloneApplicationOptions object
before running the build function again.
opts.AppFile = 'example2.m';
compiler.build.standaloneApplication(opts);

By modifying the AppFile argument and recompiling, you can create multiple applications using the
same options object.

Get Build Information from Standalone Application

Create a standalone application and save information about the build type, generated files, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.standaloneApplication('magicsquare.m')

results = 

              BuildType: 'standaloneApplication'
                  Files: {2×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.StandaloneApplicationOptions]

The Files property contains the paths to the magicsquare standalone executable and readme.txt
files.

Input Arguments
AppFile — Path to main file
character vector | string scalar

Path to the main file used to build the application, specified as a row character vector or a string
scalar. The file must be a MATLAB function, class, or app of one of the following
types: .m, .p, .mlx, .mlapp, or a valid MEX file.
Example: 'mymagic.m'

16 Functions

16-14



Data Types: char | string

opts — Standalone application build options
StandaloneApplicationOptions object

Standalone application build options, specified as a
compiler.build.StandaloneApplicationOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'EmbedArchive','on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files and folders to include in the standalone application, specified as a character vector, a
string scalar, a string array, or a cell array of character vectors. Paths can be relative to the current
working directory or absolute.
Example: 'AdditionalFiles',["myvars.mat","myfunc.m"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the standalone application.

• If you set this property to 'off', then you must add data files to the application using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','Off'
Data Types: logical

CustomHelpTextFile — Path to help file
character vector | string scalar

Path to a help file containing help text for the end user of the application, specified as a character
vector or a string scalar. The path can be relative to the current working directory or absolute.
Example: 'CustomHelpTextFile','D:\Documents\MATLAB\work\help.txt'
Data Types: char | string

EmbedArchive — Flag to embed standalone archive
'on' (default) | on/off logical value

 compiler.build.standaloneApplication

16-15



Flag to embed the standalone archive, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function embeds the archive in the standalone
executable.

• If you set this property to 'off', then the function generates the standalone archive as a separate
file.

Example: 'EmbedArchive','Off'
Data Types: logical

ExecutableIcon — Path to icon image
character vector | string scalar

Path to the icon image, specified as a character vector or a string scalar. The image is used as the
icon for the standalone executable. The path can be relative to the current working directory or
absolute. Accepted image types are .jpg, .jpeg, .png, .bmp, and .gif.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_icon_48.png'

Example: 'ExecutableIcon','D:\Documents\MATLAB\work\images\myIcon.png'
Data Types: char | string

ExecutableName — Name of generated application
character vector | string scalar

Name of the generated application, specified as a character vector or a string scalar. The default
value is the file name of AppFile. Target output names must begin with a letter or underscore
character and contain only alpha-numeric characters or underscores.
Example: 'ExecutableName','MagicSquare'
Data Types: char | string

ExecutableSplashScreen — Path to splash screen image
character vector | string scalar

Path to the splash screen image, specified as a character vector or a string scalar. The path can be
relative to the current working directory or absolute. Accepted image types
are .jpg, .jpeg, .png, .bmp, and .gif. The image is resized to 400 pixels by 400 pixels.

The default path is:

'matlabroot\toolbox\toolbox\compiler\packagingResources\default_splash.png'

Note This is only used in Windows applications built using
compiler.build.standaloneWindowsApplication.

Example: 'ExecutableSplashScreen','D:\Documents\MATLAB\work\images
\mySplash.png'

16 Functions

16-16



Data Types: char | string

ExecutableVersion — Executable version
'1.0.0.0' (default) | character vector | string scalar

Executable version, specified as a character vector or a string scalar.

Note This is only used on Windows operating systems.

Example: 'ExecutableVersion','4.0'
Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the executable name appended with
standaloneApplication.
Example: 'OutputDir','D:\Documents\MATLAB\work
\MagicSquarestandaloneApplication'

Data Types: char | string

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

.
Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

TreatInputsAsNumeric — Flag to interpret command line inputs
'off' (default) | on/off logical value

Flag to interpret command line inputs as numeric values, specified as 'on' or 'off', or as numeric
or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to
false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState.

 compiler.build.standaloneApplication

16-17



• If you set this property to 'on', then command line inputs are treated as numeric MATLAB
doubles.

• If you set this property to 'off', then command line inputs are treated as MATLAB character
vectors.

Example: 'TreatInputsAsNumeric','On'
Data Types: logical

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

• Build type, which is 'standaloneApplication'
• Paths to the compiled files
• A list of included support packages
• Build options, specified as a StandaloneApplicationOptions object

Tips
• To create a standalone application from the system command prompt using this function, use the

matlab function with the -batch option. For example:

matlab -batch compiler.build.standaloneApplication('mymagic.m')

See Also
compiler.build.StandaloneApplicationOptions | compiler.package.installer |
compiler.build.standaloneWindowsApplication | applicationCompiler | mcc

Topics
“Create Standalone Application from MATLAB” on page 1-5

16 Functions

16-18



Introduced in R2020b

 compiler.build.standaloneApplication

16-19



compiler.build.StandaloneApplicationOptions
Options for building standalone applications

Syntax
opts = compiler.build.StandaloneApplicationOptions(AppFile)
opts = compiler.build.standaloneApplicationOptions(AppFile,Name,Value)

Description
opts = compiler.build.StandaloneApplicationOptions(AppFile) creates a default
standalone application options object using a MATLAB function, class, or app specified using
AppFile. Use the StandaloneApplicationOptions object as an input to the
compiler.build.standaloneApplication and
compiler.build.standaloneWindowsApplication functions.

opts = compiler.build.standaloneApplicationOptions(AppFile,Name,Value) creates a
standalone application options object with options specified using one or more name-value
arguments.

Examples

Create Standalone Application Options Object

Create a StandaloneApplicationOptions object using file input.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.StandaloneApplicationOptions(appFile)

opts =

  StandaloneApplicationOptions with properties:

        CustomHelpTextFile: ''
              EmbedArchive: on
            ExecutableIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
            ExecutableName: 'magicsquare'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '1.0.0.0'
                   AppFile: 'C:\Program Files\MATLAB\R2022a\extern\examples\compiler\magicsquare.m'
      TreatInputsAsNumeric: off
           AdditionalFiles: {}
       AutoDetectDataFiles: on
                   Verbose: off
                 OutputDir: '.\magicsquarestandaloneApplication'

You can modify the property values of an existing StandaloneApplictionOptions object using dot
notation. For example, enable verbose output.

16 Functions

16-20



opts.Verbose = 'on'

opts =

  StandaloneApplicationOptions with properties:

        CustomHelpTextFile: ''
              EmbedArchive: on
            ExecutableIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
            ExecutableName: 'magicsquare'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '1.0.0.0'
                   AppFile: 'C:\Program Files\MATLAB\R2022a\extern\examples\compiler\magicsquare.m'
      TreatInputsAsNumeric: off
           AdditionalFiles: {}
       AutoDetectDataFiles: on
                   Verbose: on
                 OutputDir: '.\magicsquarestandaloneApplication'

Use the StandaloneApplicationOptions object as an input to the
compiler.build.standaloneApplication function to build a standalone application.
compiler.build.standaloneApplication(opts);

Customize a Standalone Application Options Object Using Name-Value Arguments

Create a StandaloneApplictionOptions object and customize it using name-value arguments.

Create a StandaloneApplicationOptions object using the function file mymagic.m. Use name-
value arguments to specify the output directory, set the executable version and icon, and treat inputs
as numeric values.
opts = compiler.build.StandaloneApplicationOptions('mymagic.m',...
    'OutputDir','D:\Documents\MATLAB\work\MagicApp',...
    'ExecutableIcon','D:\Documents\MATLAB\work\images\magicicon.png',...
    'ExecutableVersion','2.0',...
    'TreatInputsAsNumeric','On')

opts =

  StandaloneApplicationOptions with properties:

        CustomHelpTextFile: ''
              EmbedArchive: on
            ExecutableIcon: 'D:\Documents\MATLAB\work\images\magicicon.png'
            ExecutableName: 'mymagic'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '2.0'
                   AppFile: 'D:\Documents\MATLAB\work\mymagic.m'
      TreatInputsAsNumeric: on
           AdditionalFiles: {}
       AutoDetectDataFiles: on
                   Verbose: off
                 OutputDir: 'D:\Documents\MATLAB\work\MagicApp'

You can modify the property values of an existing StandaloneApplictionOptions object using dot
notation. For example, enable verbose output.
opts.Verbose = 'on'

 compiler.build.StandaloneApplicationOptions

16-21



opts =

  StandaloneApplicationOptions with properties:

        CustomHelpTextFile: ''
              EmbedArchive: on
            ExecutableIcon: 'D:\Documents\MATLAB\work\images\magicicon.png'
            ExecutableName: 'mymagic'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '2.0'
                   AppFile: 'D:\Documents\MATLAB\work\mymagic.m'
      TreatInputsAsNumeric: on
           AdditionalFiles: {}
       AutoDetectDataFiles: on
                   Verbose: on
                 OutputDir: 'D:\Documents\MATLAB\work\MagicApp'

Use the StandaloneApplicationOptions object as an input to the
compiler.build.standaloneApplication function to build a standalone application.
compiler.build.standaloneApplication(opts);

Input Arguments
AppFile — Path to main file
character vector | string scalar

Path to the main file used to build the application, specified as a row character vector or a string
scalar. The file must be a MATLAB function, class, or app of one of the following
types: .m, .p, .mlx, .mlapp, or a valid MEX file.
Example: 'mymagic.m'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'EmbedArchive','on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files and folders to include in the standalone application, specified as a character vector, a
string scalar, a string array, or a cell array of character vectors. Paths can be relative to the current
working directory or absolute.
Example: 'AdditionalFiles',["myvars.mat","myfunc.m"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

16 Functions

16-22



Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the standalone application.

• If you set this property to 'off', then you must add data files to the application using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','Off'
Data Types: logical

CustomHelpTextFile — Path to help file
character vector | string scalar

Path to a help file containing help text for the end user of the application, specified as a character
vector or a string scalar. The path can be relative to the current working directory or absolute.
Example: 'CustomHelpTextFile','D:\Documents\MATLAB\work\help.txt'
Data Types: char | string

EmbedArchive — Flag to embed standalone archive
'on' (default) | on/off logical value

Flag to embed the standalone archive, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function embeds the archive in the standalone
executable.

• If you set this property to 'off', then the function generates the standalone archive as a separate
file.

Example: 'EmbedArchive','Off'
Data Types: logical

ExecutableIcon — Path to icon image
character vector | string scalar

Path to the icon image, specified as a character vector or a string scalar. The image is used as the
icon for the standalone executable. The path can be relative to the current working directory or
absolute. Accepted image types are .jpg, .jpeg, .png, .bmp, and .gif.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_icon_48.png'

Example: 'ExecutableIcon','D:\Documents\MATLAB\work\images\myIcon.png'
Data Types: char | string

 compiler.build.StandaloneApplicationOptions

16-23



ExecutableName — Name of generated application
character vector | string scalar

Name of the generated application, specified as a character vector or a string scalar. The default
value is the file name of AppFile. Target output names must begin with a letter or underscore
character and contain only alpha-numeric characters or underscores.
Example: 'ExecutableName','MagicSquare'
Data Types: char | string

ExecutableSplashScreen — Path to splash screen image
character vector | string scalar

Path to the splash screen image, specified as a character vector or a string scalar. The path can be
relative to the current working directory or absolute. Accepted image types
are .jpg, .jpeg, .png, .bmp, and .gif. The image is resized to 400 pixels by 400 pixels.

The default path is:

'matlabroot\toolbox\toolbox\compiler\packagingResources\default_splash.png'

Note This is only used in Windows applications built using
compiler.build.standaloneWindowsApplication.

Example: 'ExecutableSplashScreen','D:\Documents\MATLAB\work\images
\mySplash.png'

Data Types: char | string

ExecutableVersion — Executable version
'1.0.0.0' (default) | character vector | string scalar

Executable version, specified as a character vector or a string scalar.

Note This is only used on Windows operating systems.

Example: 'ExecutableVersion','4.0'
Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the executable name appended with
standaloneApplication.
Example: 'OutputDir','D:\Documents\MATLAB\work
\MagicSquarestandaloneApplication'

Data Types: char | string

16 Functions

16-24



SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

.
Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

TreatInputsAsNumeric — Flag to interpret command line inputs
'off' (default) | on/off logical value

Flag to interpret command line inputs as numeric values, specified as 'on' or 'off', or as numeric
or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to
false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then command line inputs are treated as numeric MATLAB
doubles.

• If you set this property to 'off', then command line inputs are treated as MATLAB character
vectors.

Example: 'TreatInputsAsNumeric','On'
Data Types: logical

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

 compiler.build.StandaloneApplicationOptions

16-25



Output Arguments
opts — Standalone application options object
StandaloneApplictionOptions object

Standalone application build options, returned as a StandaloneApplictionOptions object.

See Also
compiler.build.standaloneApplication |
compiler.build.standaloneWindowsApplication | deploytool | mcc

Introduced in R2020b

16 Functions

16-26



compiler.build.standaloneWindowsApplication
Create a standalone application for deployment outside MATLAB that does not launch a Windows
command shell

Syntax
compiler.build.standaloneWindowsApplication(AppFile)
compiler.build.standaloneWindowsApplication(AppFile,Name,Value)
compiler.build.standaloneWindowsApplication(opts)
results = compiler.build.standaloneWindowsApplication( ___ )

Description

Caution This function is only supported on Windows operating systems.

compiler.build.standaloneWindowsApplication(AppFile) creates a standalone Windows
only application using a MATLAB function, class, or app specified using AppFile. The application
does not open a Windows command shell on execution, and as a result, no console output is
displayed. The generated executable has a .exe file extension and does not include MATLAB Runtime
or an installer.

compiler.build.standaloneWindowsApplication(AppFile,Name,Value) creates a
standalone Windows application with additional options specified using one or more name-value
arguments. Options include the executable name, version number, and icon and splash images.

compiler.build.standaloneWindowsApplication(opts) creates a standalone Windows
application with additional options specified using a
compiler.build.StandaloneApplicationOptions object opts. You cannot specify any other
options using name-value arguments.

results = compiler.build.standaloneWindowsApplication( ___ ) returns build
information as a compiler.build.Results object using any of the argument combinations in
previous syntaxes. The build information consists of the build type, paths to the compiled files, and
build options.

Examples

Create Standalone Windows Application

Create a graphical standalone application on a Windows system that displays a plot.

Write a MATLAB function that plots the values 1 to 10. Save the function in a file named myPlot.m.

function myPlot()
plot(1:10)

Build a standalone Windows application using the
compiler.build.standaloneWindowsApplication command.

 compiler.build.standaloneWindowsApplication

16-27



compiler.build.standaloneWindowsApplication('myPlot.m');

This syntax generates the following files within a folder named myPlotstandaloneApplication in
your current working directory:

• includedSupportPackages.txt — Text file that lists all support files included in the
application.

• myPlot.exe — Executable file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not

included in the application. For more information on non-supported functions, see MATLAB
Compiler Limitations on page 13-2.

• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

• splash.png — File that contains the splash image that displays when the application starts.
• unresolvedSymbols.txt — Text file that contains any unresolved symbols.

To run myPlot.exe, navigate to the myPlotstandaloneApplication folder and double-click
myPlot.exe from the file browser, execute !myPlot in the MATLAB command window, or execute
myPlot.exe in the Windows command shell.

The application displays a splash image followed by a MATLAB figure of a line plot.

16 Functions

16-28



Figure 1 (myPlot.exe)

Customize Windows Application

Create a graphical standalone application on a Windows system and customize it using name-value
arguments.

Create xVal as a vector of linearly spaced values between 0 and 2π. Use an increment of π/40
between the values. Create yVal as sine values of x. Save both variables in a MAT-file named
myVars.mat.

xVal = 0:pi/40:2*pi;
yVal = sin(xVal);
save('myVars.mat','xVal','yVal');

Create a function file named myPlot.m to create a line plot of the xVal and yVal variables.

function myPlot()
load('myVars.mat');
plot(xVal,yVal)

 compiler.build.standaloneWindowsApplication

16-29



Build the standalone application using the compiler.build.standaloneWindowsApplication
function. Use name-value arguments to specify the executable name and version number.
compiler.build.standaloneWindowsApplication('myPlot.m',...
    'ExecutableName','SineWaveApp',...
    'ExecutableVersion','2.0')

This syntax generates the following files within a folder named
SineWaveAppstandaloneApplication in your current working directory:

• includedSupportPackages.txt
• mccExcludedFiles.log
• readme.txt
• requiredMCRProducts.txt
• SineWaveApp.exe
• splash.png
• unresolvedSymbols.txt

To run SineWaveApp.exe, navigate to the myPlotstandaloneApplication folder and double-
click SineWaveApp.exe from the file browser, execute !SineWaveApp.exe in the MATLAB
command window, or execute SineWaveApp.exe at the Windows command prompt.

The application displays a splash image followed by a MATLAB figure of a sine wave.

16 Functions

16-30



Figure 1 (SineWaveApp.exe)

Create Multiple Applications Using Options Object

Create multiple graphical standalone applications on a Windows system using a
compiler.build.StandaloneApplicationOptions object.

Write a MATLAB function that plots the values 1 to 10. Save the function in a file named myPlot.m.

function myPlot()
plot(1:10)

Create a StandaloneApplicationOptions object using myPlot.m. Use name-value arguments to
specify a common output directory and display progress information during the build process.
opts = compiler.build.StandaloneApplicationOptions('myPlot.m',...
    'OutputDir','D:\Documents\MATLAB\work\WindowsApps',...
    'Verbose','On')

opts =

 compiler.build.standaloneWindowsApplication

16-31



  StandaloneApplicationOptions with properties:

            ExecutableName: 'myPlot'
        CustomHelpTextFile: ''
              EmbedArchive: on
            ExecutableIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
    ExecutableSplashScreen: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
         ExecutableVersion: '1.0.0.0'
                   AppFile: 'myPlot.m'
      TreatInputsAsNumeric: on
           AdditionalFiles: {}
       AutoDetectDataFiles: on
           SupportPackages: {'autodetect'}
                 OutputDir: 'D:\Documents\MATLAB\work\WindowsApps'
                   Verbose: on

Build a graphical standalone application by passing the StandaloneApplicationOptions object
as an input to the build function.
compiler.build.standaloneWindowsApplication(opts);

To create a new application using the function file myPlot2.m with the same options, use dot
notation to modify the AppFile of the existing StandaloneApplicationOptions object before
running the build function again.
opts.AppFile = 'example2.m';
compiler.build.standaloneWindowsApplication(opts);

By modifying the AppFile argument and recompiling, you can compile multiple applications using
the same options object.

Get Build Information from Standalone Windows Application

Create a standalone Windows application on a Windows system and save information about the build
type, generated files, included support packages, and build options to a compiler.build.Results
object.

Compile using the file Mortgage.mlapp located in matlabroot\examples\matlab\main.
results = compiler.build.standaloneWindowsApplication('Mortgage.mlapp')

results = 

  Results with properties:

              BuildType: 'standaloneWindowsApplication'
                  Files: {3×1 cell}
IncludedSupportPackages: {}
                Options: [1×1 compiler.build.StandaloneApplicationOptions]

The Files property contains the paths to the following files:

• Mortgage.exe
• splash.png

16 Functions

16-32



• readme.txt

Input Arguments
AppFile — Path to main file
character vector | string scalar

Path to the main file used to build the application, specified as a row character vector or a string
scalar. The file must be a MATLAB function, class, or app of one of the following
types: .m, .p, .mlx, .mlapp, or a valid MEX file.
Example: 'mymagic.m'
Data Types: char | string

opts — Standalone application build options
StandaloneApplicationOptions object

Standalone application build options, specified as a
compiler.build.StandaloneApplicationOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'EmbedArchive','on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files and folders to include in the standalone application, specified as a character vector, a
string scalar, a string array, or a cell array of character vectors. Paths can be relative to the current
working directory or absolute.
Example: 'AdditionalFiles',["myvars.mat","myfunc.m"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the standalone application.

• If you set this property to 'off', then you must add data files to the application using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','Off'

 compiler.build.standaloneWindowsApplication

16-33



Data Types: logical

CustomHelpTextFile — Path to help file
character vector | string scalar

Path to a help file containing help text for the end user of the application, specified as a character
vector or a string scalar. The path can be relative to the current working directory or absolute.
Example: 'CustomHelpTextFile','D:\Documents\MATLAB\work\help.txt'
Data Types: char | string

EmbedArchive — Flag to embed standalone archive
'on' (default) | on/off logical value

Flag to embed the standalone archive, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function embeds the archive in the standalone
executable.

• If you set this property to 'off', then the function generates the standalone archive as a separate
file.

Example: 'EmbedArchive','Off'
Data Types: logical

ExecutableIcon — Path to icon image
character vector | string scalar

Path to the icon image, specified as a character vector or a string scalar. The image is used as the
icon for the standalone executable. The path can be relative to the current working directory or
absolute. Accepted image types are .jpg, .jpeg, .png, .bmp, and .gif.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_icon_48.png'

Example: 'ExecutableIcon','D:\Documents\MATLAB\work\images\myIcon.png'
Data Types: char | string

ExecutableName — Name of generated application
character vector | string scalar

Name of the generated application, specified as a character vector or a string scalar. The default
value is the file name of AppFile. Target output names must begin with a letter or underscore
character and contain only alpha-numeric characters or underscores.
Example: 'ExecutableName','MagicSquare'
Data Types: char | string

ExecutableSplashScreen — Path to splash screen image
character vector | string scalar

16 Functions

16-34



Path to the splash screen image, specified as a character vector or a string scalar. The path can be
relative to the current working directory or absolute. Accepted image types
are .jpg, .jpeg, .png, .bmp, and .gif. The image is resized to 400 pixels by 400 pixels.

The default path is:

'matlabroot\toolbox\toolbox\compiler\packagingResources\default_splash.png'

Note This is only used in Windows applications built using
compiler.build.standaloneWindowsApplication.

Example: 'ExecutableSplashScreen','D:\Documents\MATLAB\work\images
\mySplash.png'

Data Types: char | string

ExecutableVersion — Executable version
'1.0.0.0' (default) | character vector | string scalar

Executable version, specified as a character vector or a string scalar.

Note This is only used on Windows operating systems.

Example: 'ExecutableVersion','4.0'
Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the executable name appended with
standaloneApplication.
Example: 'OutputDir','D:\Documents\MATLAB\work
\MagicSquarestandaloneApplication'

Data Types: char | string

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

• 'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

• 'none' — No support packages are included. Using this option can cause runtime errors.
• A string scalar, character vector, or cell array of character vectors — Only the specified support

packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

 compiler.build.standaloneWindowsApplication

16-35



.
Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models','Deep Learning Toolbox Model for Places365-GoogLeNet Network'}

Data Types: char | string | cell

TreatInputsAsNumeric — Flag to interpret command line inputs
'off' (default) | on/off logical value

Flag to interpret command line inputs as numeric values, specified as 'on' or 'off', or as numeric
or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to
false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then command line inputs are treated as numeric MATLAB
doubles.

• If you set this property to 'off', then command line inputs are treated as MATLAB character
vectors.

Example: 'TreatInputsAsNumeric','On'
Data Types: logical

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','On'
Data Types: logical

Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

• Build type, which is 'standaloneApplication
• Paths to the following files:

• ExecutableName.exe
• splash.png
• readme.txt

16 Functions

16-36



• A list of included support packages
• Build options, specified as a StandaloneApplicationOptions object

Limitations
• This function is only supported on Windows operating systems.
• The application does not open a Windows command shell on execution, and as a result, no console

output is displayed.

Tips
• To create a Windows standalone application from the system command prompt using this function,

use the matlab function with the -batch option. For example:

matlab -batch compiler.build.standaloneWindowsApplication('myapp.mlapp')

See Also
compiler.build.standaloneApplication |
compiler.build.StandaloneApplicationOptions | compiler.package.installer |
applicationCompiler | mcc

Introduced in R2020b

 compiler.build.standaloneWindowsApplication

16-37



compiler.codetools.deployableSupportPackages
Determine support packages used by files

Syntax
spstr = compiler.codetools.deployableSupportPackages
spstr = compiler.codetools.deployableSupportPackages(Files)

Description
spstr = compiler.codetools.deployableSupportPackages returns a list of all support
packages usable by MATLAB Compiler.

spstr = compiler.codetools.deployableSupportPackages(Files) returns a list of all
support packages used by Files.

Examples

List Installed Deployable Support Packages

List all the installed deployable support packages on the system.

Run the function with no arguments.

spstr = compiler.codetools.deployableSupportPackages

spstr = 

  4×1 string array

    "Aerospace Ephemeris Data"
    "Aerospace Geoid Data"
    "Communications Toolbox Support Package for RTL-SDR Radio"
    "MATLAB Support Package for Raspberry Pi Hardware"

List Deployable Support Packages Used by File

List all deployable support packages that are used by the specified file.

Install the support packages required by your MATLAB file. For this example, the Ephemeris Data
for Aerospace Toolbox add-on is installed.

Run the function using planetEphemeris.m, which is located in matlabroot\toolbox\aero
\aero.

spstr = compiler.codetools.deployableSupportPackages(...
   fullfile(matlabroot,'toolbox','aero','aero','planetEphemeris.m'))

16 Functions

16-38



spstr = 

    "Aerospace Ephemeris Data"

Input Arguments
Files — List of files
string scalar | cell array of character vectors | string array

List of files, specified as a character vector, a string scalar, a string array, or a cell array of character
vectors. Each file must be a MATLAB function, class, or app of one of the following
types: .m, .p, .mlx, .mlapp, or a valid MEX file.
Example: {'function1.m',function2.m'}
Data Types: char | string | cell

Output Arguments
spstr — List of support package names
string array

A list of support package names, specified as a string array.
Data Types: string

See Also
compiler.build.Results

Introduced in R2021b

 compiler.codetools.deployableSupportPackages

16-39



compiler.package.docker
Create a Docker image for files generated by MATLAB Compiler on Linux operating systems

Syntax
compiler.package.docker(results)
compiler.package.docker(results,Name,Value)
compiler.package.docker(results,'Options',opts)
compiler.package.docker(files,filepath,'ImageName',imageName)
compiler.package.docker(files,filepath,'ImageName',imageName,Name,Value)
compiler.package.docker(files,filepath,'Options',opts)

Description

Caution This function is only supported on Linux operating systems.

compiler.package.docker(results) creates a Docker image for files generated by the MATLAB
Compiler using the compiler.build.Results object results. The results object is created by a
compiler.build function.

compiler.package.docker(results,Name,Value) creates a Docker image using the
compiler.build.Results object results and additional options specified as one or more name-
value pairs. Options include the build folder, entry point command, and image name.

compiler.package.docker(results,'Options',opts) creates a Docker image using the
compiler.build.Results object results and additional options specified by a DockerOptions
object opts. If you use a DockerOptions object, you cannot specify any other options using name-
value pairs.

compiler.package.docker(files,filepath,'ImageName',imageName) creates a Docker
image using files that are generated by the MATLAB Compiler. The Docker image name is specified
by imageName.

compiler.package.docker(files,filepath,'ImageName',imageName,Name,Value)
creates a Docker image using files that are generated by the MATLAB Compiler. The Docker image
name is specified by imageName. Additional options are specified as one or more name-value pairs.

compiler.package.docker(files,filepath,'Options',opts) creates a Docker image using
files that are generated by the MATLAB Compiler and additional options specified by a
DockerOptions object opts. If you use a DockerOptions object, you cannot specify any other
options using name-value pairs.

Examples

Create Docker Image Using Results

Create a Docker image from a standalone application on a Linux system.

16 Functions

16-40



Install and configure Docker on your system.

Create a standalone application using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.standaloneApplication(appFile);

The Results object is passed as an input to the compiler.package.docker function to build the
Docker image.
compiler.package.docker(buildResults);

Customize Docker Image Using Results and Name Value Pairs

Customize a standalone application using name-value pairs on a Linux system to specify the image
name and build directory.

Create a standalone application using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.standaloneApplication(appFile);

Build the Docker image using the Results object and specify additional options as name-value
arguments.
compiler.package.docker(buildResults, ...
    'ImageName','mymagicapp', ...
    'DockerContext','/home/mluser/Documents/MATLAB/docker');

Customize Docker Image Using Results and Options Object

Customize a Docker image using a DockerOptions object on a Linux system.

Create a standalone application using hello-world.m and save the build results to a
compiler.build.Results object.

buildResults = compiler.build.standaloneApplication('hello-world.m');

Create a DockerOptions object to specify additional build options, such as the image name.

opts = compiler.package.DockerOptions(buildResults,
    'ImageName','hellodocker', ...
    'ExecuteDockerBuild','Off');

The DockerOptions and Results objects are passed as inputs to the compiler.package.docker
function to build the Docker image.
compiler.package.docker(buildResults,'Options',opts);

Create Docker Image Using Files and Name Value Pairs

Create a Docker image using files generated by the MATLAB Compiler and specify the image name
on a Linux system.

 compiler.package.docker

16-41

https://www.docker.com/


Build a standalone application using the mcc command.

mcc -o runmyapp -m myapp.m

Build the Docker image by passing the generated files to the compiler.package.docker function.
compiler.package.docker('runmyapp','requiredMCRProducts.txt', ...
    'ImageName','launchapp','EntryPoint','runmyapp');

Customize Docker Image Using Files and Options Object

Customize a Docker image using files generated by the MATLAB Compiler and a DockerOptions
object on a Linux system.

Create a standalone application using helloworld.m and save the build results to a
compiler.build.Results object..

buildResults = compiler.build.standaloneApplication('helloworld.m');

Create a DockerOptions object to specify additional build options, such as the build folder.

opts = compiler.package.DockerOptions(buildResults, ...    
    'DockerContext','DockerImages')

opts = 

  DockerOptions with properties:

            EntryPoint: 'helloworld'
    ExecuteDockerBuild: on
             ImageName: 'helloworld'
         DockerContext: './DockerImages'

You can modify property values of an existing DockerOptions object using dot notation. For
example, populate the DockerContext folder without calling 'docker build'.
opts.ExecuteDockerBuild = 'Off';

Build the Docker image by passing the generated files to the compiler.package.docker function.
cd helloworldstandaloneApplication

compiler.package.docker('helloworld','requiredMCRProducts.txt', ...
    'Options',opts);

Input Arguments
results — Build results
compiler.build.Results object

Build results created by a compiler.build function, specified as a compiler.build.Results
object.

files — Files and folders for installation
character vector | string scalar | string array | cell array of strings

Files and folders for installation, specified as a character vector, string scalar, string array, or cell
array of strings. These files are typically generated by the MATLAB Compiler product and can also

16 Functions

16-42



include any additional files and folders required by the installed application to run. Files generated by
the MATLAB Compiler product in a particular release can be packaged using the
compiler.package.docker function of the same release.
Example: 'myDockerFiles/'
Data Types: char | string | cell

filepath — Path to requiredMCRProducts.txt file
character vector | string scalar

Path to the requiredMCRProducts.txt file, specified as a character vector or string scalar. This
file is generated by the MATLAB Compiler product. The path can be relative to the current working
directory or absolute.
Example: '/home/mluser/Documents/MATLAB/magicsquare/requiredMCRProducts.txt'
Data Types: char | string

imageName — Name of Docker image
character vector | string scalar

Name of the Docker image. It must comply with Docker naming rules.
Example: 'hello-world'
Data Types: char | string

opts — Docker options
DockerOptions object

Docker options, specified as a DockerOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExecuteDockerBuild','on'

DockerContext — Path to build folder
'ImageNamedocker' (default) | character vector | string scalar

Path to the build folder where the Docker image is built, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

If no path is specified, the function creates a build folder named ImageNamedocker in the current
working directory.
Example: 'DockerContext','/home/mluser/Documents/MATLAB/docker/
magicsquaredocker'

Data Types: char | string

EntryPoint — Command executed at image start-up
'' (default) | character vector | string scalar

 compiler.package.docker

16-43



The command to be executed at image start-up, specified as a character vector or a string scalar.
Example: 'EntryPoint',"exec top -b"
Data Types: char | string

ExecuteDockerBuild — Flag to build Docker image
'on' (default) | on/off logical value

Flag to build the Docker image, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function will build the Docker image.
• If you set this property to 'off', then the function will populate the DockerContext folder

without calling 'docker build'.

Example: 'ExecuteDockerBuild','Off'
Data Types: logical

ImageName — Name of Docker image
'' (default) | character vector | string scalar

Name of the Docker image, specified as a character vector or a string scalar. The name must comply
with Docker naming rules. Docker repository names must be lowercase. If the main executable or
archive file is named using uppercase letters, then the uppercase letters are replaced with lowercase
letters in the Docker image name.
Example: 'ImageName','magicsquare'
Data Types: char | string

Limitations
• Only standalone applications can be packaged into Docker images as of R2020b.

See Also
compiler.package.DockerOptions | compiler.build.standaloneApplication |
compiler.build.Results

Topics
“Package MATLAB Standalone Applications into Docker Images” on page 14-2

Introduced in R2020b

16 Functions

16-44



compiler.package.DockerOptions
Create a Docker options object

Syntax
opts = compiler.package.DockerOptions(results)
opts = compiler.package.DockerOptions(results,Name,Value)
opts = compiler.package.DockerOptions('ImageName',imageName)
opts = compiler.package.DockerOptions('ImageName',imageName,Name,Value)

Description

Caution This function is only supported on Linux operating systems.

opts = compiler.package.DockerOptions(results) creates a DockerOptions object opts
using the compiler.build.Results object results. The Results object is created by a
compiler.build function. The DockerOptions object is passed as an input to the
compiler.package.docker function to specify build options.

opts = compiler.package.DockerOptions(results,Name,Value) creates a
DockerOptions object opts using the compiler.build.Results object results and additional
options specified as one or more pairs of name-value arguments. Options include the build folder,
entry point command, and image name.

opts = compiler.package.DockerOptions('ImageName',imageName) creates a default
DockerOptions object with the image name specified by imageName.

opts = compiler.package.DockerOptions('ImageName',imageName,Name,Value) creates
a default DockerOptions object with the image name specified by imageName and additional
options specified as one or more pairs of name-value arguments.

Examples

Create a Docker Options Object Using Build Results

Create a DockerOptions object using the build results from a standalone application on a Linux
system.

Create a standalone application using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.standaloneApplication(appFile);

Create a DockerOptions object using the build results from the
compiler.build.standaloneApplication function.

opts = compiler.package.DockerOptions(buildResults);

 compiler.package.DockerOptions

16-45



You can modify property values of an existing DockerOptions object using dot notation. For
example, set the build folder.
opts.DockerContext = 'myDockerFiles';

The DockerOptions and Results objects are passed as inputs to the compiler.package.docker
function to build the Docker image.
compiler.package.docker(buildResults,'Options',opts);

Customize Docker Options Object Using Build Results

Create a DockerOptions object using build results from a standalone application and customize it
using name-value arguments.

Create a standalone application using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.standaloneApplication(appFile);

Create a DockerOptions object using the build results from the
compiler.build.standaloneApplication function. Use name-value arguments to specify the
image name and build folder.

opts = compiler.package.DockerOptions(buildResults,...
    'DockerContext','Docker/MagicSquare',...
    'ImageName','magic-square-');

opts = 

  DockerOptions with properties:

            EntryPoint: 'magicsquare'
    ExecuteDockerBuild: on
             ImageName: 'magic-square-'
         DockerContext: './Docker/MagicSquare/magic-square-docker'

Create Docker Options Object Using Image Name

Create a default DockerOptions object to specify the image name.

Create a DockerOptions object.

opts = compiler.package.DockerOptions('ImageName','helloworld')

opts = 

  DockerOptions with properties:

            EntryPoint: ''
    ExecuteDockerBuild: on
             ImageName: 'helloworld'
         DockerContext: './helloworlddocker'

16 Functions

16-46



You can modify property values of an existing DockerOptions object using dot notation. For
example, populate the DockerContext folder without calling 'docker build'.
opts.ExecuteDockerBuild = 'Off';

opts = 

  DockerOptions with properties:

            EntryPoint: ''
    ExecuteDockerBuild: off
             ImageName: 'helloworld'
         DockerContext: './helloworlddocker'

Customize Docker Options Object Using Image Name

Create a DockerOptions object using the image name and customize it using name-value
arguments.

Create a DockerOptions object. Use name-value arguments to specify the build folder and entry
point command.

opts = compiler.package.DockerOptions('ImageName','myapp-',...
    'DockerContext','Docker/MyDockerApp',...
    'EntryPoint',"exec top -b")

opts = 

  DockerOptions with properties:

            EntryPoint: 'exec top -b'
    ExecuteDockerBuild: on
             ImageName: 'myapp-'
         DockerContext: './Docker/MyDockerApp'

Input Arguments
results — Build results
compiler.build.Results object

Build results created by a compiler.build function, specified as a compiler.build.Results
object.

imageName — Name of Docker image
character vector | string scalar

Name of the Docker image. It must comply with Docker naming rules.
Example: 'hello-world'
Data Types: char | string

 compiler.package.DockerOptions

16-47



Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExecuteDockerBuild','on'

DockerContext — Path to build folder
'ImageNamedocker' (default) | character vector | string scalar

Path to the build folder where the Docker image is built, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

If no path is specified, the function creates a build folder named ImageNamedocker in the current
working directory.
Example: 'DockerContext','/home/mluser/Documents/MATLAB/docker/
magicsquaredocker'

Data Types: char | string

EntryPoint — Command executed at image start-up
'' (default) | character vector | string scalar

The command to be executed at image start-up, specified as a character vector or a string scalar.
Example: 'EntryPoint',"exec top -b"
Data Types: char | string

ExecuteDockerBuild — Flag to build Docker image
'on' (default) | on/off logical value

Flag to build the Docker image, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the function will build the Docker image.
• If you set this property to 'off', then the function will populate the DockerContext folder

without calling 'docker build'.

Example: 'ExecuteDockerBuild','Off'
Data Types: logical

ImageName — Name of Docker image
'' (default) | character vector | string scalar

Name of the Docker image, specified as a character vector or a string scalar. The name must comply
with Docker naming rules. Docker repository names must be lowercase. If the main executable or
archive file is named using uppercase letters, then the uppercase letters are replaced with lowercase
letters in the Docker image name.
Example: 'ImageName','magicsquare'

16 Functions

16-48



Data Types: char | string

Output Arguments
opts — Docker options object
DockerOptions object

Docker image build options, returned as a DockerOptions object.

Limitations
• Only standalone applications can be packaged into Docker images as of R2020b.

See Also
compiler.package.docker | compiler.build.standaloneApplication |
compiler.build.Results

Introduced in R2020b

 compiler.package.DockerOptions

16-49



compiler.package.installer
Create an installer for files generated by MATLAB Compiler

Syntax
compiler.package.installer(results)
compiler.package.installer(results,Name,Value)
compiler.package.installer(results,'Options',opts)
compiler.package.installer(files,filePath,'ApplicationName',appName)
compiler.package.installer(files,filePath,'ApplicationName',appName,
Name,Value)
compiler.package.installer(files,filePath,'Options',opts)

Description
compiler.package.installer(results) creates an installer using the
compiler.build.Results object results generated from a compiler.build function.

compiler.package.installer(results,Name,Value) creates an installer using the
compiler.build.Results object results with additional options specified using one or more
name-value arguments.

compiler.package.installer(results,'Options',opts) creates an installer using the
compiler.build.Results object results with installer options specified by an
InstallerOptions object opts. If you use an InstallerOptions object, you cannot specify any
other options using name-value arguments.

compiler.package.installer(files,filePath,'ApplicationName',appName) creates an
installer for files generated by the mcc command. The installed application name is specified by
appName. The installer file extension is determined by the operating system in which you run the
function.

compiler.package.installer(files,filePath,'ApplicationName',appName,
Name,Value) creates an installer for files generated by the mcc command. The installed application
name is specified by appName. The installer can be customized using optional name-value arguments.

compiler.package.installer(files,filePath,'Options',opts) creates an installer for
files generated by the mcc command with installer options specified by an InstallerOptions
object opts. If you use an InstallerOptions object, you cannot specify any other options using
name-value arguments.

Examples

Create Installer Using Results Object

Create an installer for a standalone application using the results from the
compiler.build.standaloneApplication function.

16 Functions

16-50



In MATLAB, locate the MATLAB code that you want to deploy as a standalone application. For this
example, compile using the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a standalone application using the compiler.build.standaloneApplication command.
results = compiler.build.standaloneApplication(appFile);

Create an installer for the standalone application using the compiler.package.installer
function.
compiler.package.installer(results);

The function generates an installer named MyAppInstaller within a folder named
magicsquareinstaller.

Customize Installer Using Results Object

Create an installer for a standalone application using the results from the
compiler.build.standaloneApplication function and customize it using name-value
arguments.

Save the path to the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a standalone application using the compiler.build.standaloneApplication command.
results = compiler.build.standaloneApplication(appFile);

Create an installer for the standalone application using the compiler.package.installer
function using the Results object. Use name-value arguments to specify the installer name and
include MATLAB Runtime within the installer.
compiler.package.installer(results, ...
    'InstallerName','MyMagicInstaller', ...
    'RuntimeDelivery','installer');

The function generates an installer named MyMagicInstaller within a folder named
magicsquareinstaller.

Customize Installer Using Results Object and Options Object

Create an installer for a standalone application on a Windows system using the results from the
compiler.build.standaloneApplication function. Customize the installer using an
InstallerOptions object.

Save the path to the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a standalone application using the compiler.build.standaloneApplication command.
results = compiler.build.standaloneApplication(appFile);

Create an InstallerOptions object. Use name-value arguments to specify the application name,
author company, author name, installer name, and summary.

 compiler.package.installer

16-51



opts = compiler.package.InstallerOptions('ApplicationName','MagicSquare_Generator', ...
    'AuthorCompany','Boston Common', ...
    'AuthorName','Frog', ...
    'InstallerName','MagicSquare_Installer', ...
    'Summary','Generates a magic square.')

opts = 

  InstallerOptions with properties:

           RuntimeDelivery: 'web'
           InstallerSplash: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
             InstallerIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
             InstallerLogo: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_logo.png'
                AuthorName: 'Frog'
               AuthorEmail: ''
             AuthorCompany: 'Boston Common'
                   Summary: 'Generates a magic square.'
               Description: ''
         InstallationNotes: ''
                  Shortcut: ''
                   Version: '1.0'
             InstallerName: 'MagicSquare_Installer'
           ApplicationName: 'MagicSquare_Generator'
                 OutputDir: '.\MagicSquare_Generatorinstaller'
    DefaultInstallationDir: 'C:\Program Files\MagicSquare_Generator'

Create an installer for the standalone application using the Results and InstallerOptions
objects as inputs to the compiler.package.installer function.

compiler.package.installer(results,'Options',opts);

The function generates an installer named MagicSquare_Installer within a folder named
MagicSquare_Generatorinstaller.

Create Installer Using Files

Create an installer for a standalone application on a Windows system.

Write a MATLAB function that generates a magic square. Save the function in a file named
mymagic.m.

function out = mymagic(in)
out = magic(in)

Build a standalone application using the mcc command.

mcc -m mymagic.m

mymagic.exe
mccExcludedFiles.log
readme.txt
requiredMCRProducts.txt

Create an installer for the standalone application using the compiler.package.installer
function.
compiler.package.installer('mymagic.exe', ...
    'D:\Documents\MATLAB\work\MagicSquare\requiredMCRProducts.txt', ...
    'ApplicationName','MagicSquare_Generator')

16 Functions

16-52



The function generates an installer named MyAppInstaller.exe within a folder named
MagicSquare_Generatorinstaller.

Customize Installer Using Files

Customize an installer for a standalone application using name-value arguments.

Build a standalone application using the compiler.build.standaloneApplication command.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
buildResults = compiler.build.standaloneApplication(appFile);

Save the path to the generated requiredMCRProducts.txt file.

runtimeProducts = fullfile(buildResults.Options.OutputDir,'requiredMCRProducts.txt')

Save the list of files from the standalone application build results.
fileList = buildResults.Files

Optionally, you can add additional files to the installer by modifying fileList. Additional files are
installed in the installation directory along with the application executable.
fileList = [fileList; {'UsageNotes.txt'}];

Create an installer for the standalone application using the compiler.package.installer
function.
compiler.package.installer(fileList, runtimeProducts, ...
    'ApplicationName','CustomMagicSquare', ...
    'InstallerName','Installer_With_Addl_Files', ...
    'Summary','See UsageNotes.txt for info.')

Customize Installer Using Files and Installer Options Object

Customize an installer for a standalone application on a Windows system using an
InstallerOptions object.

Create an InstallerOptions object.
opts = compiler.package.InstallerOptions('ApplicationName','MagicSquare_Generator', ...
    'AuthorCompany','Boston Common', ...
    'AuthorName','Frog', ...
    'InstallerName','MagicSquare_Installer', ...
    'Summary','Generates a magic square.')

opts = 

  InstallerOptions with properties:

           RuntimeDelivery: 'web'
           InstallerSplash: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
             InstallerIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
             InstallerLogo: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_logo.png'
                AuthorName: 'Frog'
               AuthorEmail: ''
             AuthorCompany: 'Boston Common'
                   Summary: 'Generates a magic square.'
               Description: ''

 compiler.package.installer

16-53



         InstallationNotes: ''
                  Shortcut: ''
                   Version: '1.0'
             InstallerName: 'MagicSquare_Installer'
           ApplicationName: 'MagicSquare_Generator'
                 OutputDir: '.\MagicSquare_Generator'
    DefaultInstallationDir: 'C:\Program Files\MagicSquare_Generator'

Pass the InstallerOptions object as an input to the function.
compiler.package.installer('mymagic.exe','requiredMCRProducts.txt','Options',opts)

Input Arguments
results — Build results object
Results object

Build results, specified as a compiler.build.Results object. Create the Results object by saving
the output from a compiler.build function.

files — List of files and folders for installation
character vector | string scalar | cell array of character vectors | string array

List of files and folders for installation, specified as a character vector, a string scalar, a cell array of
character vectors, or a string array. These files are typically generated by the mcc command or a
compiler.build function and can also include any additional files and folders required by the
installed application to run. Additional files are installed in the installation directory along with the
application executable.

• Files generated in a particular release can be packaged using the
compiler.package.installer function of the same release.

• Files of type .ctf on one operating system can be packaged using the
compiler.package.installer function on a different operating system, as long as the build
command and the compiler.package.installer function are from the same release.

Example: {'mymagic.exe','UsageNotes.txt'}
Data Types: char | string

filePath — Path to requiredMCRProducts.txt file
character vector | string scalar

Path to the requiredMCRProducts.txt file generated by MATLAB Compiler.
Example: 'D:\Documents\MATLAB\work\MagicSquare\requiredMCRProducts.txt'
Data Types: char | string

appName — Name of the installed application
character vector | string scalar

Name of the installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

16 Functions

16-54



opts — Installer options object
InstallerOptions object

Installer options, specified as an InstallerOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Version','9.5' specifies the version of the installed application.

ApplicationName — Application name
'' (default) | character vector | string scalar

Name of installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

AuthorCompany — Company name
'' (default) | character vector | string scalar

Name of company that created the application, specified as a character vector or a string scalar.
Example: 'Boston Common'
Data Types: char | string

AuthorEmail — Email address
'' (default) | character vector | string scalar

Email address of the application author, specified as a character vector or a string scalar.
Example: 'frog@bostoncommon.com'
Data Types: char | string

AuthorName — Name
'' (default) | character vector | string scalar

Name of application author, specified as a character vector or a string scalar.
Example: 'Frog'
Data Types: char | string

DefaultInstallationDir — Default installation path
character vector | string scalar

Default directory where you want the installer to install the application, specified as a character
vector or a string scalar.

If no path is specified, the default path for each operating system is:

 compiler.package.installer

16-55



Operating System Default Installation Directory
Windows C:\Program Files\appName
Linux /usr/appName
macOS /Applications/appName

Example: On Windows: C:\Program Files\MagicSquare_Generator
Data Types: char | string

Description — Detailed application description
'' (default) | character vector | string scalar

Detailed description of the application, specified as a character vector or a string scalar.
Example: 'The MagicSquare_Generator application generates an n-by-n matrix
constructed from the integers 1 through n2 with equal row and column sums.'

Data Types: char | string

InstallationNotes — Notes
'' (default) | character vector | string scalar

Notes about additional requirements for using application, specified as a character vector or a string
scalar.
Example: 'This is a Linux installer.'
Data Types: char | string

InstallerIcon — Path to icon image
character vector | string scalar

Path to an image file used as the icon for the installed application, specified as a character vector or a
string scalar.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_icon_48.png'

Example: 'D:\Documents\MATLAB\work\images\myIcon.png'

InstallerLogo — Path to installer image
character vector | string scalar

Path to an image file used as the installer's logo, specified as a character vector or a string scalar. The
logo will be resized to 150 pixels by 340 pixels.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_logo.png'

Example: 'D:\Documents\MATLAB\work\images\myLogo.png'

InstallerName — Name of installer file
MyAppInstaller (default) | character vector | string scalar

16 Functions

16-56



Name of the installer file, specified as a character vector or a string scalar. The extension is
determined by the operating system in which the function is executed.
Example: 'MagicSquare_Installer'

InstallerSplash — Path to splash screen image
character vector | string scalar

Path to an image file used as the installer's splash screen, specified as a character vector or a string
scalar. The splash screen icon will be resized to 400 pixels by 400 pixels.

The default path is:

'matlabroot\toolbox\toolbox\compiler\packagingResources\default_splash.png'

Example: 'D:\Documents\MATLAB\work\images\mySplash.png'

OutputDir — Path to folder where the installer will be saved
character vector | string scalar

Path to folder where the installer is saved, specified as a character vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows .\appNameinstaller
Linux ./appNameinstaller
macOS ./appNameinstaller

The . in the directories listed above represents the present working directory.
Example: 'D:\Documents\MATLAB\work\MagicSquare'

RuntimeDelivery — MATLAB Runtime delivery option
'web' (default) | 'installer'

Choice on how the MATLAB Runtime is made available to the installed application.

• 'web'—Option for installer to download MATLAB Runtime from MathWorks website during
application installation. This is the default option.

• 'installer'—Option to include MATLAB Runtime within the installer so that it can be installed
during application installation without connecting to the MathWorks website. Use this option if
you think your end-user may not have access to the Internet.

Example: 'installer'
Data Types: char | string

Shortcut — Path to shortcut
'' (default) | character vector | string scalar

Path to a file or folder that the installer will create a shortcut to at install time, specified as a
character vector or a string scalar.
Example: '.\mymagic.exe'

 compiler.package.installer

16-57



Data Types: char | string

Summary — Summary description of application
'' (default) | character vector | string scalar

Summary description of the application, specified as a character vector or a string scalar.
Example: 'Generates a magic square.'
Data Types: char | string

Version — Version of installed application
'1.0' (default) | character vector | string scalar

Version number of the installed application, specified as a character vector or a string scalar.
Example: '2.0'
Data Types: char | string

See Also
compiler.package.InstallerOptions | mcc

Introduced in R2020a

16 Functions

16-58



compiler.package.InstallerOptions
Options for creating MATLAB Compiler package installers

Syntax
opts = compiler.package.InstallerOptions(results)
opts = compiler.package.InstallerOptions(results,Name,Value)
opts = compiler.package.InstallerOptions('ApplicationName',appName)
opts = compiler.package.InstallerOptions('ApplicationName',appName,
Name,Value)

Description
opts = compiler.package.InstallerOptions(results) creates a default
InstallerOptions object opts using the compiler.build.Results object results generated
from a compiler.build function. The InstallerOptions object is passed as an input to the
compiler.package.installer function.

opts = compiler.package.InstallerOptions(results,Name,Value) creates an
InstallerOptions object opts using the compiler.build.Results object results with
additional options specified using one or more name-value arguments. The InstallerOptions
object is passed as an input to the compiler.package.installer function.

opts = compiler.package.InstallerOptions('ApplicationName',appName) creates a
default InstallerOptions object opts with application name specified by appName. The
InstallerOptions object is passed as an input to the compiler.package.installer function.

opts = compiler.package.InstallerOptions('ApplicationName',appName,
Name,Value) creates an InstallerOptions object opts with application name specified by
appName and additional customizations specified by name-value arguments. The
InstallerOptions object is passed as an input to the compiler.package.installer function.

Examples

Create an Installer Options Object Using Results

Create an InstallerOptions object using the results from the
compiler.build.standaloneApplication function and additional options specified as name-
value arguments.

For this example, build a standalone application using the file magicsquare.m located in
matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
results = compiler.build.standaloneApplication(appFile)

results = 

  Results with properties:

 compiler.package.InstallerOptions

16-59



            BuildType: 'standaloneApplication'
                Files: {2×1 cell}
              Options: [1×1 compiler.build.StandaloneApplicationOptions]

opts = compiler.package.InstallerOptions(results,'AuthorName','Frog')

opts = 

  InstallerOptions with properties:

           RuntimeDelivery: 'web'
           InstallerSplash: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
             InstallerIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
             InstallerLogo: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_logo.png'
                AuthorName: 'Frog'
               AuthorEmail: ''
             AuthorCompany: ''
                   Summary: ''
               Description: ''
         InstallationNotes: ''
                  Shortcut: ''
                   Version: ''
             InstallerName: 'MyAppInstaller'
           ApplicationName: 'magicsquare'
                 OutputDir: '.\magicsquare'
    DefaultInstallationDir: 'C:\Program Files\magicsquare'

You can modify the property values of an existing InstallerOptions object using dot notation. For
example, set the installer name to MyMagicInstaller.

opts.InstallerName = 'MyMagicInstaller'

To create an installer for the standalone application, use the Results and InstallerOptions
objects as inputs to the compiler.package.installer function.

compiler.package.installer(results,'Options',opts);

The function generates an installer named MyMagicInstaller.exe within a folder named
magicsquareinstaller.

Create an Installer Options Object Using Application Name

Create an InstallerOptions object with an application name and additional options specified as
name-value arguments.
opts = compiler.package.InstallerOptions('ApplicationName','MagicSquare_Generator',...
    'AuthorCompany','Boston Common',...
    'AuthorName','Frog',...
    'InstallerName','MagicSquare_Installer',...
    'Summary','Generates a magic square.')

opts = 

  InstallerOptions with properties:

           RuntimeDelivery: 'web'
           InstallerSplash: 'C:\Program Files\MATLAB\R2022a\toolbox\toolbox\compiler\packagingResources\default_splash.png'
             InstallerIcon: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_icon_48.png'
             InstallerLogo: 'C:\Program Files\MATLAB\R2022a\toolbox\compiler\packagingResources\default_logo.png'

16 Functions

16-60



                AuthorName: 'Frog'
               AuthorEmail: ''
             AuthorCompany: 'Boston Common'
                   Summary: 'Generates a magic square.'
               Description: ''
         InstallationNotes: ''
                  Shortcut: ''
                   Version: '1.0'
             InstallerName: 'MagicSquare_Installer'
           ApplicationName: 'MagicSquare_Generator'
                 OutputDir: '.\MagicSquare_Generator'
    DefaultInstallationDir: 'C:\Program Files\MagicSquare_Generator'

You can modify the property values of an existing InstallerOptions object using dot notation. For
example, set the installation notes to Windows installer.

opts.InstallationNotes = 'Windows installer'

Input Arguments
results — Build results object
Results object

Build results, specified as a compiler.build.Results object. Create the Results object by saving
the output from a compiler.build function.

appName — Name of the installed application
character vector | string scalar

Name of the installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Version','9.5' specifies the version of the installed application.

ApplicationName — Application name
'' (default) | character vector | string scalar

Name of installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

AuthorCompany — Company name
'' (default) | character vector | string scalar

Name of company that created the application, specified as a character vector or a string scalar.

 compiler.package.InstallerOptions

16-61



Example: 'Boston Common'
Data Types: char | string

AuthorEmail — Email address
'' (default) | character vector | string scalar

Email address of the application author, specified as a character vector or a string scalar.
Example: 'frog@bostoncommon.com'
Data Types: char | string

AuthorName — Name
'' (default) | character vector | string scalar

Name of application author, specified as a character vector or a string scalar.
Example: 'Frog'
Data Types: char | string

DefaultInstallationDir — Default installation path
character vector | string scalar

Default directory where you want the installer to install the application, specified as a character
vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows C:\Program Files\appName
Linux /usr/appName
macOS /Applications/appName

Example: On Windows: C:\Program Files\MagicSquare_Generator
Data Types: char | string

Description — Detailed application description
'' (default) | character vector | string scalar

Detailed description of the application, specified as a character vector or a string scalar.
Example: 'The MagicSquare_Generator application generates an n-by-n matrix
constructed from the integers 1 through n2 with equal row and column sums.'

Data Types: char | string

InstallationNotes — Notes
'' (default) | character vector | string scalar

Notes about additional requirements for using application, specified as a character vector or a string
scalar.
Example: 'This is a Linux installer.'
Data Types: char | string

16 Functions

16-62



InstallerIcon — Path to icon image
character vector | string scalar

Path to an image file used as the icon for the installed application, specified as a character vector or a
string scalar.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_icon_48.png'

Example: 'D:\Documents\MATLAB\work\images\myIcon.png'

InstallerLogo — Path to installer image
character vector | string scalar

Path to an image file used as the installer's logo, specified as a character vector or a string scalar. The
logo will be resized to 150 pixels by 340 pixels.

The default path is:

'matlabroot\toolbox\compiler\packagingResources\default_logo.png'

Example: 'D:\Documents\MATLAB\work\images\myLogo.png'

InstallerName — Name of installer file
MyAppInstaller (default) | character vector | string scalar

Name of the installer file, specified as a character vector or a string scalar. The extension is
determined by the operating system in which the function is executed.
Example: 'MagicSquare_Installer'

InstallerSplash — Path to splash screen image
character vector | string scalar

Path to an image file used as the installer's splash screen, specified as a character vector or a string
scalar. The splash screen icon will be resized to 400 pixels by 400 pixels.

The default path is:

'matlabroot\toolbox\toolbox\compiler\packagingResources\default_splash.png'

Example: 'D:\Documents\MATLAB\work\images\mySplash.png'

OutputDir — Path to folder where the installer will be saved
character vector | string scalar

Path to folder where the installer is saved, specified as a character vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows .\appNameinstaller
Linux ./appNameinstaller
macOS ./appNameinstaller

 compiler.package.InstallerOptions

16-63



The . in the directories listed above represents the present working directory.
Example: 'D:\Documents\MATLAB\work\MagicSquare'

RuntimeDelivery — MATLAB Runtime delivery option
'web' (default) | 'installer'

Choice on how the MATLAB Runtime is made available to the installed application.

• 'web'—Option for installer to download MATLAB Runtime from MathWorks website during
application installation. This is the default option.

• 'installer'—Option to include MATLAB Runtime within the installer so that it can be installed
during application installation without connecting to the MathWorks website. Use this option if
you think your end-user may not have access to the Internet.

Example: 'installer'
Data Types: char | string

Shortcut — Path to shortcut
'' (default) | character vector | string scalar

Path to a file or folder that the installer will create a shortcut to at install time, specified as a
character vector or a string scalar.
Example: '.\mymagic.exe'
Data Types: char | string

Summary — Summary description of application
'' (default) | character vector | string scalar

Summary description of the application, specified as a character vector or a string scalar.
Example: 'Generates a magic square.'
Data Types: char | string

Version — Version of installed application
'1.0' (default) | character vector | string scalar

Version number of the installed application, specified as a character vector or a string scalar.
Example: '2.0'
Data Types: char | string

Output Arguments
opts — Installer options object
InstallerOptions object

Installer options, returned as an InstallerOptions object.

See Also
compiler.package.installer | mcc

16 Functions

16-64



Introduced in R2020a

 compiler.package.InstallerOptions

16-65



ctfroot
Location of files related to deployed application

Syntax
root = ctfroot

Description
root = ctfroot returns the name of the folder where the deployable archive for the application is
expanded.

Use this function to access any file that the user would have included in their project (excluding the
ones in the packaging folder).

Examples
Determine location of deployable archive

appRoot = ctfroot;

Output Arguments
root — Path to expanded deployable archive
character vector

Path to expanded deployable archive returned as a character vector in the form:
application_name_mcr. .

Introduced in R2006a

16 Functions

16-66



deploytool
Open a list of application deployment apps

Syntax
deploytool
deploytool project_name

Description
deploytool opens a list of application deployment apps.

deploytool project_name opens the appropriate deployment app with the project preloaded.

Examples

Open a List of Application Deployment Apps

Open the list of apps.

deploytool

Input Arguments
project_name — name of the project to be opened
character array or string

Name of the project to be opened by the appropriate deployment app, specified as a character array
or string. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Warns starting in R2020a

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

Introduced in R2006b

 deploytool

16-67



getmcruserdata
Retrieve MATLAB array value associated with a given key

Syntax
value = getmcruserdata(key)

Description
value = getmcruserdata(key) returns MATLAB data associated with the string key in the
current MATLAB Runtime instance. If there is no data associated with the key, it returns an empty
matrix.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Get the magic square data associated with the string 'magic' in the current instance of the MATLAB
Runtime.

value = magic(3);
setmcruserdata('magic', value);
getmcruserdata('magic')

ans =
     8     1     6
     3     5     7
     4     9     2

Input Arguments
key — Key associated with MATLAB data
string

key is the MATLAB string with which MATLAB data value is associated within the current instance
of the MATLAB Runtime.

Output Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

See Also
setmcruserdata

16 Functions

16-68



Introduced in R2008b

 getmcruserdata

16-69



isdeployed
Determine whether code is running in deployed or MATLAB mode

Syntax
x = isdeployed

Description
x = isdeployed returns logical 1 (true) when the function is running in deployed mode using
MATLAB Runtime and 0 (false) if it is running in a MATLAB session.

An application running in deployed mode consists of a collection of MATLAB functions and data
packaged using MATLAB Compiler into software components that run outside of a MATLAB session
using MATLAB Runtime libraries.

Examples

Protect Use of ADDPATH

The path of a deployed application is fixed at compile time and cannot change. Use isdeployed to
ensure that the application uses path modifying functions such as addpath before deployment.

if ~(ismcc || isdeployed)
    addpath(mypath);
end

Send Data to Printer

Deployed applications must use deployprint, rather than print, to send data to a printer.

if ~isdeployed
    print
else 
   deployprint
end

Display Documentation

You cannot use the doc function to open the Help browser from a deployed application. Instead,
redirect a help query to the MathWorks website.

if ~isdeployed
    doc(mfile);
else 

16 Functions

16-70



   web('https://www.mathworks.com/support.html');
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX targets.
• Returns false for SIM targets, which you should query using coder.target.
• Returns false for other targets.

See Also
ismcc | mcc | deploytool

Topics
“Write Deployable MATLAB Code” on page 5-9
“MATLAB Data Files in Compiled Applications” on page 5-13

Introduced before R2006a

 isdeployed

16-71



ismcc
Test if code is running during compilation process (using mcc)

Syntax
x = ismcc

Description
x = ismcc returns true when the function is being executed by mcc dependency checker and false
otherwise.

When this function is executed by the compilation process started by mcc that runs outside of
MATLAB in a system command prompt, it will return true. This function will return false when
executed within MATLAB as well as in deployed mode. To test for deployed mode execution, use
isdeployed. This function must be used in matlabrc or hgrc (or any function called within them,
for example startup.m) to guard code from being executed by MATLAB Compiler (mcc) or MATLAB
Compiler SDK.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be guarded from
executing using ismcc during the compilation process and isdeployed for the deployed application
in startup.m, as shown in the example on this page.

Examples
`% startup.m
    if ~(ismcc || isdeployed)
       addpath(fullfile(matlabroot,'work'));
    end 

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

See Also
isdeployed | mcc

Introduced in R2008b

16 Functions

16-72



libraryCompiler
Open the Library Compiler app

Syntax
libraryCompiler
libraryCompiler project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler project

libraryCompiler project_name opens the Library Compiler app with the project preloaded.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Warns starting in R2020a

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

Introduced in R2013b

 libraryCompiler

16-73



mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -m options mfilename
mcc -e options mfilename

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib 
options mfilename1 mfilename2...mfilenameN

mcc -H -W hadoop:archiveName,CONFIG:configFile mfilename

mcc -m options mfilename

Description
General Usage

mcc options mfilename1 mfilename2...mfilenameN compiles the functions as specified by
the options. The options used depend on the intended results of the compilation.

For information on compiling:

• C/C++ shared libraries, .NET assemblies, Java packages, or Python packages, see mcc for
MATLAB Compiler SDK

• MATLAB Production Server deployable archives or Excel add-ins for MATLAB Production Server,
see mcc for MATLAB Compiler SDK

Standalone Application

mcc -m options mfilename compiles the function into a standalone application.

This is equivalent to mcc -W main -T link:exe.

mcc -e options mfilename compiles the function into a standalone application that does not
open a Windows command prompt on execution. The -e option works only on Windows operating
systems.

This syntax is equivalent to -W WinMain -T link:exe.

Excel Add-In

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib 
options mfilename1 mfilename2...mfilenameN creates a Microsoft Excel add-in from the
specified files.

• addin_name — Specifies the name of the add-in.

16 Functions

16-74



• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the addin_name as the default. If specified, className needs to be different from
mfilename.

• version_number — Specifies the version number of the add-in file as major.minor.bug.build
in the file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number to 1.0.0.0 by default.

• major — Specifies the major version number. If you do not specify a number, mcc sets major
to 0.

• minor — Specifies the minor version number. If you do not specify a number, mcc sets minor
to 0.

• bug— Specifies the bug fix maintenance release number. If you do not specify a number, mcc
sets bug to 0.

• build— Specifies the build number. If you do not specify a number, mcc sets build to 0.

Note Excel add-ins can be created only in MATLAB running on Windows.

Note Remove the single quotes around 'excel:addin_name,className,version' when
executing the mcc command from a DOS prompt.

MapReduce Applications on Hadoop

mcc -H -W hadoop:archiveName,CONFIG:configFile mfilename generates a deployable
archive from mfilename that can be run as a job by Hadoop®.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the configuration file for creating a deployable archive. For

more information, see “Configuration File for Creating Deployable Archive Using the mcc
Command”.

Tip You can issue the mcc command either at the MATLAB command prompt or the Windows or
Linux system command-line.

Simulink Simulations (Requires Simulink Compiler)

mcc -m options mfilename compiles a MATLAB application containing a Simulink simulation
into a standalone application. For more information, see “Create and Deploy a Script with Simulink
Compiler” (Simulink Compiler).

Examples
Create a standalone application

mcc -m magic.m

Create a standalone application that does not open the Command shell (Windows only)

mcc -e magic.m

 mcc

16-75



Create a standalone application with a system-level file version number (Windows only)

Create a standalone application in Windows with version number 3.4.1.5.

mcc -W 'main:mymagic,version=3.4.1.5' -T link:exe mymagic.m

Create a standalone application and include MATLAB preferences

mcc -m helloWorld.m -a C:\Users\someuser\AppData\Roaming\MathWorks\MATLAB\R2022a\matlab.mlsettings

Create an Excel add-in

mcc -W 'excel:myAddin,myClass,1.0' -T link:lib magic.m

Create an Excel add-in with a system-level file version number (Windows only)

Create an Excel add-in in Windows with version number 5.2.1.7.

mcc -W 'excel:myAddin,myClass,version=5.2.1.7' -T link:lib -b mymagic.m

Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchvie,myExcelClass,version=1.0' -T link:lib mymagic.m

Create a Standalone Application for a Simulink Simulation (Requires Simulink Compiler)

To create a standalone application for a Simulink simulation:

Create a Simulink model using Simulink. This example uses the model sldemo_suspn_3dof.

Create a MATLAB application that uses APIs from Simulink Compiler to simulate the model. For more
information, see “Deploy Simulations with Tunable Parameters” (Simulink Compiler).
function deployParameterTuning(outputFile, mbVariable)
 
    if ischar(mbVariable) || isstring(mbVariable)
        mbVariable = str2double(mbVariable);
    end
     
    if isnan(mbVariable) || ~isa(mbVariable, 'double') || ~isscalar(mbVariable)
        disp('mb must be a double scalar or a string or char that can be converted to a double scalar');
    end
     
    in = Simulink.SimulationInput('sldemo_suspn_3dof');   
    in = in.setVariable('Mb', mbVariable);
    in = simulink.compiler.configureForDeployment(in);
    out = sim(in);
     
    save(outputFile, 'out');
  
end

Use mcc to create a standalone application from the MATLAB application.

mcc -m deployParameterTuning.m

Input Arguments
mfilename — File to be compiled
file name

File to be compiled, specified as a character vector or string scalar.

16 Functions

16-76



mfilename1 mfilename2...mfilenameN — Files to be compiled
list of file names

One or more files to be compiled, specified as a space-separated list of file names.

options — Options for customizing the output
-a | -b | -B | -c | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -r | -R | -s | -S | -T | -u | -U | -v | -w | -
W | -X | -Y | -Z

Options for customizing the output, specified as a list of character vectors or string scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added. Multiple -a
options are permitted.

Also, add MATLAB preferences to a deployed application using -a path
\mymatlab.mlsettings to specify the preferences to be added.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir 

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the deployable archive
and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the

 mcc

16-77



application is executed. You can use the isdeployed function to determine whether the
application is being run in deployed mode, and adjust the path accordingly. The -a option also
creates a .auth file for authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The
same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to
the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include
replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” (MATLAB Compiler SDK).

• -c

When used in conjunction with the -l option, suppresses compiling and linking of the generated C
wrapper code. The -c option cannot be used independently of the -l option.

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder. The specified folder must already exist.
• -e

Use -e in place of the -m option to generate a standalone Windows application that does not open
a Windows command prompt on execution. -e is equivalent to -W WinMain -T link:exe.

This option works only on Windows operating systems.

16 Functions

16-78



• -f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in
the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed by
directory2. This option is important for standalone compilation where the MATLAB path is not
available.

If used in conjunction with the -N option, the -I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.

To pass options such as /bigobj, delineate the string according to your platform.

 mcc

16-79



Platform Syntax
MATLAB -M 'COMPFLAGS=$COMPFLAGS /bigobj'

Windows command prompt -M COMPFLAGS="$COMPFLAGS /bigobj"

Linux and macOS command line -M CFLAGS='$CFLAGS /bigobj'

• -n

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the –p option to conditionally include folders and their
subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, .exe for Windows standalone
applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot
\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

16 Functions

16-80



• If a folder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -I to force its inclusion.)

• -r

Embed resource icon in binary. The syntax is as follows:

-r 'path/to/my_icon.ico'
• -R

Provide MATLAB Runtime options that are passed to the application at initialization time.

Note This option is relevant only when building standalone applications or Excel add-ins using
MATLAB Compiler.

The syntax is as follows:

-R option

Option Description Target
'-
logfile,
filename
'

Specify a log file name. The file is created in
the application folder at runtime. Option must
be in single quotes. Use double quotes when
executing the command from a Windows
Command Prompt.

MATLAB Compiler

-
nodispla
y

Suppress the MATLAB nodisplay run-time
warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler
-
startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler Standalone
Applications

-
complete
msg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler Standalone
Applications

-
singleCo
mpThread

Limit MATLAB to a single computational
thread.

MATLAB Compiler

-
software
opengl

Use Mesa Software OpenGL for rendering. MATLAB Compiler

Caution When running on macOS, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK, mcc still
compiles and generates the results, but the -R option doesn't apply to these libraries and does not
do anything.

 mcc

16-81



• -s

Obfuscate folder structures and file names in the deployable archive (.ctf file) from the end user.
Optionally encrypt additional file types.

The -s option directs mcc to place user code and data contained in .m, .p, v7.3 .mat, and MEX
files into a user package within the CTF. During runtime, MATLAB code and data is decrypted and
loaded directly from the user package rather than extracted to the file system. MEX files are
temporarily extracted from the user package before being loaded.

To manually include additional file types in the user package, add each file type in a separate
extension tag to the file matlabroot/toolbox/compiler/
advanced_package_supported_files.xml.

The following is not supported:

• ver function
• Out-of-process MATLAB Runtime ( C++ shared library for MATLAB Data Array)
• Out-of-process MEX file execution (mexhost, feval, matlab.mex.MexHost)

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path and a base workspace for each function in the class. If multiple instances of a class are
created, each instance gets an independent context. This ensures that changes made to the global
or base workspace in one instance of the class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instance1 creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....
Excel add-in Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
COM component • Using the Library Compiler app, click Settings

and add -S to the Additional parameters
passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

16 Functions

16-82



Target Description
compile:exe Generate a C/C++ wrapper file, and compile

C/C++ files to an object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

link:lib Same as compile:lib and also link object
files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List the compile-time warnings that have abbreviated

identifiers, together with their status.
-w enable Enable all compile-time warnings.
-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disable action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

 mcc

16-83



Syntax Description
-w error[:<string>] Treat specific compile-time and runtime warnings

associated with <string> as an error. Omit the optional
<string> to apply the error action to all compile-time
and runtime warnings.

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings. This option is enabled by default.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
    warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
    warning on
end

You can also specify multiple -w options.

For example, if you want to disable all warnings except repeated_file, you write:

-w disable -w enable:repeated_file

When you specify multiple -w options, they are processed from left to right.
• -W

Control the generation of function wrappers. Use the syntax

-W type 

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

Target Syntax
Standalone Application -W 'main:appName,version=version'
Standalone Application (no Windows console) -W

'WinMain:appName,version=version'
Excel Add-In -W

'excel:addinName,className,version=
version'

16 Functions

16-84



Target Syntax
Hadoop MapReduce Application -W

'hadoop:archiveName,CONFIG:configFi
le'

Spark Application -W 'spark:appName,version'

Note Replace single quotes with double when executing the command from a Windows Command
Prompt.

• -X

Use -X to ignore data files read by common MATLAB file I/O functions during dependency
analysis. For more information, see “Dependency Analysis Using MATLAB Compiler” on page 5-3.
For examples on how to use the -X option, see %#exclude.

• -Y

Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

• -Z

Use

-Z option

to specify the method of adding support packages to the deployable archive.

Syntax Description
-Z 'autodetect' The dependency analysis process detects and

includes the required support packages
automatically. This is the default behavior of
mcc.

-Z 'none' No support packages are included. Using this
option can cause runtime errors.

-Z packagename Only the specified support package is
included. To specify multiple support
packages, use multiple -Z inputs.

Note To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

 mcc

16-85



Tips
• On Windows, you can generate a system-level file version number for your target file by appending

version=version_number to the target generating mcc syntax. For an example, see “Create a
standalone application with a system-level file version number (Windows only)” on page 16-76.

version_number — Specifies the version of the target file as major.minor.bug.build in the
file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number, by default, to 1.0.0.0.

• major — Specifies the major version number. If you do not specify a version number, mcc sets
major to 1.

• minor — Specifies the minor version number. If you do not specify a version number, mcc sets
minor to 0.

• bug — Specifies the bug fix maintenance release number. If you do not specify a version
number, mcc sets bug to 0.

• build — Specifies build number. If you do not specify a version number, mcc sets build to 0.

This functionality is supported for standalone applications and Excel add-ins in MATLAB Compiler.
For supported targets in MATLAB Compiler SDK, see the Tips section in mcc.

See Also

Introduced before R2006a

16 Functions

16-86



mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to current
platform

Syntax
[installer_path, major, minor, platform] = mcrinstaller

Description
[installer_path, major, minor, platform] = mcrinstaller displays information about
available MATLAB Runtime installers.

If no MATLAB Runtime installer is found, you are prompted to download an installer using the
command compiler.runtime.download.

You must distribute the MATLAB Runtime library to your end users to enable them to run applications
developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure MATLAB Runtime” (MATLAB Compiler SDK)for more information about
the MATLAB Runtime installer.

Examples

Find MATLAB Runtime Installer Location

Display the location of MATLAB Runtime installers for a particular platform. This example shows
output for a win64 system. The release number is called R20xxx indicating the release for which the
MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Output Arguments
installer_path — Full path to the installer
character vector

The installer_path is the full path to the installer for the current platform.

major — Major version number
positive integer scalar

The major is the major version number of the installer.

 mcrinstaller

16-87



minor — Minor version number
positive integer scalar

The minor is the minor version number of the installer.

platform — Name of the current platform
character vector

The platform is the name of the current platform (returned by COMPUTER(arch)).

See Also
mcrversion | compiler.runtime.download

Topics
“Install and Configure MATLAB Runtime” (MATLAB Compiler SDK)

Introduced in R2009a

16 Functions

16-88



mcrversion
Return MATLAB Runtime version number that matches MATLAB version

Syntax
[major,minor] = mcrversion

Description
[major,minor] = mcrversion returns the MATLAB Runtime version number matching the
version of MATLAB from where the command is executed. The MATLAB Runtime version number
consists of two digits, separated by a decimal point. This function returns each digit as a separate
output variable: major, minor.

If the version number ever increases to three or more digits, call mcrversion with more outputs, as
follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Examples

Return the MATLAB Runtime Version

Return the MATLAB Runtime Version Number Matching the Version of MATLAB.

[major, minor] = mcrversion

major =
     9
minor =
     9

Output Arguments
major — Major version number
positive integer scalar

Major version number returned as a positive integer scalar.
Data Types: double

minor — Minor version number
positive integer scalar

Minor version number returned as a positive integer scalar.
Data Types: double

 mcrversion

16-89



See Also
compiler.runtime.download | mcrinstaller

Topics
“Install and Configure MATLAB Runtime” (MATLAB Compiler SDK)

Introduced in R2008a

16 Functions

16-90



setmcruserdata
Associate MATLAB data value with a key

Syntax
void setmcruserdata(key, value)

Description
void setmcruserdata(key, value) associates the MATLAB data value with the string key in
the current MATLAB Runtime instance. If there is already a value associated with the key, it is
overwritten.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Store a cell array and associate it with the string 'PI_Data' in the current instance of the MATLAB
Runtime.

value = {3.14159, 'March 14th is PI day'};
setmcruserdata('PI_Data', value);

Input Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

Value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

key — Key associated with MATLAB data
string

key is a MATLAB string with which MATLAB data value is associated within the current instance of
the MATLAB Runtime.

See Also
getmcruserdata

Introduced in R2008a

 setmcruserdata

16-91



compiler.runtime.download
Download MATLAB Runtime installer

Syntax
compiler.runtime.download

Description
compiler.runtime.download downloads the MATLAB Runtime installer matching the version and
update level of MATLAB from where the command is executed. If the installer has already been
downloaded to the machine, it returns a message stating that the MATLAB Runtime installer exists
and specifies its location. If the machine is offline, it returns a message that contains the download
URL to the installer.

Examples

Download MATLAB Runtime Installer

Download the MATLAB Runtime installer on Windows using MATLAB R2022a.

compiler.runtime.download

Downloading MATLAB Runtime installer. It may take several minutes...

MATLAB Runtime installer has been downloaded to:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.12\MATLAB_Runtime_R2022a_win64.zip"

Display Location of MATLAB Runtime Installer

If you already have downloaded the latest version of the MATLAB Runtime installer, this command
gives the following result on Windows using MATLAB R2022a:

compiler.runtime.download

An existing MATLAB Runtime installer was found at:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.12\MATLAB_Runtime_R2022a_win64.zip"

Display MATLAB Runtime Installer Download URL

If you are not connected to the internet, this command displays a URL that you can open in a web
browser to download the MATLAB Runtime installer. The URL corresponds to the version and update
level of MATLAB, as indicated by <release>/Release/<update_level>.

Using MATLAB R2022a with no updates, display the download URL for MATLAB Runtime.

compiler.runtime.download

16 Functions

16-92



Downloading MATLAB Runtime installer. It may take several minutes...

Error using compiler.runtime.download
A connection could not be established to download the Runtime Installer.
Download the runtime from:
https://ssd.mathworks.com/supportfiles/downloads/R2022a/Release/0/deployment_files/installer/complete/win64/MATLAB_Runtime_R2022a_win64.zip
and update the runtime location in Compiler Settings.

See Also
mcrinstaller | mcrversion

Introduced in R2018a

 compiler.runtime.download

16-93





MATLAB Compiler Quick Reference

A



mcc Command Arguments Listed Alphabetically
Option Description Comment
-? Display help message. Cannot be used in a deploytool app.
-a path Add path to the deployable

archive.
If you specify a folder name, all files in the
folder are added. If you use a wildcard (*), all
files matching the wildcard are added.

-b Generate Excel compatible
formula function.

Requires MATLAB Compiler for Excel add-ins.
Cannot be used in a deploytool app.

-B
filename[:arg[,arg]]

Replace -B filename on the mcc
command line with the contents of
filename.

The file should contain only mcc command-line
options. These are MathWorks included
options files:

• -B csharedlib:foo (C shared library)
• -B cpplib:foo (C++ library)

Cannot be used in a deploytool app.
-c Generate C wrapper code. Equivalent to -T codegen.
-C Direct mcc to not embed the

deployable archive in generated
binaries.

 

-d directory Place output in specified folder. The specified folder must already exist. Cannot
be used in a deploytool app.

-e Suppresses appearance of the MS-
DOS Command Window when
generating a standalone
application.

Use -e in place of the -m option. Available for
Windows only. Use with -R option to generate
error logging. Equivalent to -W WinMain -T
link:exe. Cannot be used in a deploytool
app.

The standalone app compiler suppresses the
MS-DOS command window by default. To
enable it, deselect Do not display the
Windows Command Shell (console) for
execution in the Additional Runtime
Settings area.

-f filename Use the specified options file,
filename, when calling mbuild.

mbuild -setup is recommended.

-g Generate debugging information.  
-G Same as -g.  
-I directory Add folder to search path for

MATLAB files.
 

-K Directs mcc to not delete output
files if the compilation ends
prematurely, due to error.

Default behavior is to dispose of any partial
output if the command fails to execute
successfully.

-l Create a function library. Equivalent to -W lib -T link:lib. Cannot
be used in a deploytool app.

A mcc Command Arguments Listed Alphabetically

A-2



Option Description Comment
-m Generate a standalone application. Equivalent to -W main -T link:exe. Cannot

be used in a deploytool app.
-M string Pass string to mbuild. Use to define compile-time options.
-n Automatically treat numeric inputs

as MATLAB doubles.
Cannot be used in a deploytool app.

-N Clear the path of all but a minimal,
required set of folders.

Uses the following folders:

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

-o outputfile Specify name of final output file. Adds appropriate extension. Cannot be used in
a deploytool app.

-p directory Add folder to compilation path in
an order-sensitive context.

Requires -N option.

-R option Specify run-time options for
MATLAB Runtime.

Valid only for standalone applications using
MATLAB Compiler.

option = -nojvm, -nodisplay, '-logfile
filename', -startmsg, and -completemsg
filename

-s Obfuscate folder structures and
file names in the deployable
archive (.ctf file) from the end
user.

 

-S Create singleton MATLAB
Runtime.

Default for generic COM components. Valid for
Microsoft Excel and Java packages.

-T Specify the output target phase
and type.

Default is codegen. Cannot be used in a
deploytool app.

-u Registers COM component for
current user only on development
machine.

Valid only for generic COM components and
Microsoft Excel add-ins.

-v Verbose; display compilation steps.  
-w option Display warning messages. option = list, level, or level:string

where

level = disable, enable, error, off:string, or
on:string

-W type Control the generation of function
wrappers.

type = main cpplib:<string>
lib:<string> none
com:compname,clname,version

Cannot be used in a deploytool app.

 mcc Command Arguments Listed Alphabetically

A-3



Option Description Comment
-X Ignore data files detected by

dependency analysis.
For more information, see “Dependency
Analysis Using MATLAB Compiler” on page 5-
3.

-Y licensefile Use licensefile when checking
out a MATLAB Compiler license.

The -Y flag works only with the command-line
mode.

>>!mcc -m foo.m -Y license.lic

-Z option Specify method of including
support packages.

option = 'autodetect' (default), 'none',
or packagename.

Packaging Log and Output Folders
By default, the deployment app places the packaging log and the Testing Files, End User Files, and
Packaged Installers folders in the target folder location. If you specify a custom location, the app
creates any folders that do not exist at compile time.

A mcc Command Arguments Listed Alphabetically

A-4



mcc Command Line Arguments Grouped by Task
COM Components

Option Description Comment
-u Registers COM component for

current user only on
development machine

Valid only for generic COM
components and Microsoft Excel
add-ins (requiring MATLAB
Compiler)

Deployable Archive

Option Description Comment
-a filename Add filename to the

deployable archive.
None

-C Directs mcc to not embed the
deployable archive in C/C++
and main/Winmain shared
libraries and standalone
binaries by default.

None

Debugging

Option Description Comment
-g Generate debugging

information.
None

-G Same as -g None
-K Directs mcc to not delete output

files if the compilation ends
prematurely, due to error.

mcc's default behavior is to
dispose of any partial output if
the command fails to execute
successfully.

-v Verbose; display compilation
steps.

None

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,vers
ion

-? Display help message. None

Dependency Function Processing

Option Description Comment
-a filename Add filename to the

deployable archive.
None

 mcc Command Line Arguments Grouped by Task

A-5



Licenses

Option Description Comment
-Y licensefile Use licensefile when

checking out a MATLAB
Compiler license.

The -Y flag works only with the
command-line mode.

>>!mcc -m foo.m -Y license.lic

MATLAB Compiler for Excel Add-Ins

Option Description Comment
-b Generate Excel compatible

formula function.
Requires MATLAB Compiler

-u Registers COM component for
current user only on
development machine

Valid only for generic COM
components and Microsoft Excel
add-ins (requiring MATLAB
Compiler)

MATLAB Path

Option Description Comment
-I directory Add folder to search path for

MATLAB files.
MATLAB path is automatically
included when running from
MATLAB, but not when running
from a DOS/UNIX shell.

-N Clear the path of all but a
minimal, required set of folders.

None

-p directory Add directory to compilation
path in an order-sensitive
context.

Requires -N option

mbuild

Option Description Comment
-f filename Use the specified options file,

filename, when calling
mbuild.

mbuild -setup is
recommended.

-M string Pass string to mbuild. Use to define compile-time
options.

A mcc Command Line Arguments Grouped by Task

A-6



MATLAB Runtime

Option Description Comment
-R option Specify run-time options for

MATLAB Runtime.
option = -nojvm -
nodisplay '-
logfile,filename' -
startmsg -completemsg
filename

-S Create Singleton MATLAB
Runtime.

Default for generic COM
components. Valid for Microsoft
Excel and Java packages.

Override Default Inputs

Option Description Comment
-B filename[:arg[,arg]] Replace -B filename on the

mcc command line with the
contents of filename (bundle).

The file should contain only mcc
command-line options. These
are MathWorks included options
files:

• -B csharedlib:foo — C
shared library

• -B cpplib:foo — C++
library

Override Default Outputs

Option Description Comment
-d directory Place output in specified folder. None
-o outputfile Specify name of final output file. Adds appropriate extension
-e Suppresses appearance of the

MS-DOS Command Window
when generating a standalone
application.

Use -e in place of the -m option.
Available for Windows only. Use
with -R option to generate error
logging. Equivalent to -W
WinMain -T link:exe

The standalone app compiler
suppresses the MS-DOS
command window by default. To
unsuppress it, unselect Do not
display the Windows
Command Shell (console) for
execution in the Additional
Runtime Settings area.

 mcc Command Line Arguments Grouped by Task

A-7



Wrappers and Libraries

Option Description Comment
-c Generate C wrapper code. Equivalent to -T codegen
-l Macro to create a function

library.
Equivalent to -W lib -T
link:lib

-m Macro to generate a standalone
application.

Equivalent to -W main -T
link:exe

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,vers
ion

A mcc Command Line Arguments Grouped by Task

A-8



Apps

17



Application Compiler
Package MATLAB programs for deployment as standalone applications

Description
The Application Compiler app packages MATLAB programs into applications that can run outside
of MATLAB.

Open the Application Compiler App
• MATLAB toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter applicationCompiler.

17 Apps

17-2



Examples
• “Create Standalone Application from MATLAB” on page 1-5

Parameters
main file — name of the function to package
character vector

Name of the function to package as a character vector. The selected function is the entry point for the
packaged application.

packaging options — method for installing the MATLAB Runtime with the packaged
application
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether to include the MATLAB Runtime fallback for MATLAB Runtime installer in
the generated application by selecting one of the two options in the Packaging Options section.
Including the MATLAB Runtime installer in the package significantly increases the size of the
package.

Runtime downloaded from web — Generates an installer that downloads the MATLAB Runtime and
installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime installer.

The first time you select this option, you are prompted to download the MATLAB Runtime installer or
obtain a CD if you do not have internet access.

Files required for your application to run — files that must be included with
application
list of files

Files that must be included with application as a list of files.

Files installed for your end user — files installed on the end user's machine when
the application is installed
list of files

Optional files installed with application as a list of files.

Additional runtime settings — execution options for the application
check options

Check the appropriate boxes if you don't want a command window to show up during execution or if
you want a log file to be created.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

 Application Compiler

17-3



Testing Files — Folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

End User Files — Folder where files for building a custom installer are stored
character vector

Folder where files for building a custom installer are stored as a character vector.

Packaged Installers — Folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Application information

Application Name — name of the installed application
character vector

Name of the installed application as a character vector.

For example, if the name is foo, the installed executable would be foo.exe, the start menu entry
would be foo. The folder created for the application would be InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.

Version — version of the generated application
character vector

Version of the generated application as a character vector.

splash screen — image displayed on installer
image

Image displayed on installer as an image.

Author Name — name of the application author
character vector

Name of the application author as a character vector.

Email — Email address used to contact application support
character vector

Email address used to contact application support as a character vector.

Summary — brief description of application
character vector

Brief description of application as a character vector.

Description — detailed description of application
character vector

Detailed description of application as a character vector.

17 Apps

17-4



Additional installer options

Default installation folder — Folder where application is installed
character vector

Folder where the application is installed as a character vector.

Installation notes — notes about additional requirements for using application
character vector

Notes about additional requirements for using application as a character vector.

Programmatic Use
applicationCompiler

See Also
Topics
“Create Standalone Application from MATLAB” on page 1-5

Introduced in R2013b

 Application Compiler

17-5



Hadoop Compiler
Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Note The Hadoop Compiler app will be removed in a future release. To create standalone
MATLAB® MapReduce applications, or deployable archives from MATLAB map and reduce functions,
use the mcc command. For details, see “Compatibility Considerations”.

Description
The Hadoop Compiler app packages MATLAB map and reduce functions into a deployable archive.
You can incorporate the archive into a Hadoop mapreduce job by passing it as a payload argument to
job submitted to a Hadoop cluster.

Open the Hadoop Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter hadoopCompiler.

17 Apps

17-6



Parameters
map function — mapper file
character vector

Function for the mapper, specified as a character vector.

reduce function — reducer file
character vector

Function for the reducer, specified as a character vector.

datastore file — file containing a datastore representing the data to be processed
character vector

A file containing a datastore representing the data to be processed, specified as a character vector.

In most cases, you will start off by working on a small sample dataset residing on a local machine that
is representative of the actual dataset on the cluster. This sample dataset has the same structure and
variables as the actual dataset on the cluster. By creating a datastore object to the dataset residing
on your local machine you are taking a snapshot of that structure. By having access to this datastore
object, a Hadoop job executing on the cluster will know how to access and process the actual dataset
residing on HDFS™.

output types — format of output
keyvalue (default) | tabulartext

Format of output from Hadoop mapreduce job, specified as a keyvalue or tabular text.

additional configuration file content — additional parameters configuring how
Hadoop executes the job
character vector

Additional parameters to configure how Hadoop executes the job, specified as a character vector. For
more information, see “Configuration File for Creating Deployable Archive Using the mcc Command”.

files required for your MapReduce job payload to run — files that must be included
with generated artifacts
list of files

Files that must be included with generated artifacts, specified as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler, specified as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored, specified as a character vector.

 Hadoop Compiler

17-7



packaged files — folder where generated artifacts are stored
character vector

Folder where generated artifacts are stored, specified as a character vector.

Compatibility Considerations
Hadoop Compiler will be removed
Not recommended starting in R2020a

Hadoop Compiler app will be removed in a future release. To create standalone MATLAB
MapReduce applications, or deployable archives from MATLAB map and reduce functions, use the
mcc command.

Introduced in R2014b

17 Apps

17-8


	Getting Started
	MATLAB Compiler Product Description
	Appropriate Tasks for MATLAB Compiler Products
	Create Standalone Application from MATLAB
	Create Function in MATLAB
	Create Standalone Application Using Application Compiler App
	Create Standalone Application Using compiler.build.standaloneApplication
	Create Standalone Application Installer Using compiler.package.installer
	Install Standalone Application
	Run Standalone Application


	MATLAB Runtime Additional Info
	Differences Between MATLAB and MATLAB Runtime
	Performance Considerations and MATLAB Runtime

	Deploying Standalone Applications
	Standalone Applications and Arguments
	Overview
	Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables
	Run Standalone Applications that Use Arguments

	Use Parallel Computing Toolbox in Deployed Applications
	Export Cluster Profile
	Link to Parallel Computing Toolbox Profile Within Your Code
	Pass Parallel Computing Toolbox Profile at Run Time
	Switch Between Cluster Profiles in Deployed Applications
	Sample C Code to Load Cluster Profile

	Integrate Application with Mac OS X Finder
	Overview
	Installing the Mac Application Launcher Preference Pane
	Configuring the Installation Area
	Running the Application

	Files Generated After Packaging MATLAB Functions
	for_redistribution Folder
	for_redistribution_files_only Folder
	for_testing Folder


	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Determine Data Type of Command-Line Input (For Packaging Standalone Applications Only)
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings

	Manage Support Packages
	Using a Compiler App
	Using the Command Line


	MATLAB Code Deployment
	How Does MATLAB Deploy Functions?
	Dependency Analysis Using MATLAB Compiler
	Function Dependency
	Data File Dependency
	Exclude Files From Package

	MEX-Files, DLLs, or Shared Libraries
	Deployable Archive
	Additional Details

	Write Deployable MATLAB Code
	Packaged Applications Do Not Process MATLAB Files at Run Time
	Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files
	Use isdeployed Functions To Execute Deployment-Specific Code Paths
	Gradually Refactor Applications That Depend on Noncompilable Functions
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	Calling Shared Libraries in Deployed Applications
	MATLAB Data Files in Compiled Applications
	Explicitly Including MATLAB Data files Using the %#function Pragma
	Load and Save Functions


	Standalone Application Creation
	Dependency Analysis Function and User Interaction with the Compilation Path
	addpath and rmpath in MATLAB
	Passing -I <directory> on the Command Line
	Passing -N and -p <directory> on the Command Line


	Deployment Process
	About the MATLAB Runtime
	How is the MATLAB Runtime Different from MATLAB?
	Performance Considerations and the MATLAB Runtime

	Install and Configure MATLAB Runtime
	Download MATLAB Runtime Installer
	Install MATLAB Runtime Interactively
	Install MATLAB Runtime Noninteractively
	Install MATLAB Runtime without Administrator Rights
	Install Multiple MATLAB Runtime Versions on Single Machine
	Install MATLAB and MATLAB Runtime on Same Machine
	Uninstall MATLAB Runtime

	Run Applications Using a Network Installation of MATLAB Runtime
	MATLAB Runtime on Big Data Platforms
	Cloudera
	Apache Ambari
	Azure HDInsight

	Install Deployed Application
	Install Application Interactively
	Install Application Noninteractively


	Work with the MATLAB Runtime
	MATLAB Runtime Startup Options
	Set MATLAB Runtime Options

	Using MATLAB Runtime User Data Interface
	MATLAB Functions
	Set and Retrieve MATLAB Runtime Data for Shared Libraries

	Display MATLAB Runtime Initialization Messages
	Best Practices


	Distributing Code to an End User
	Distribute MATLAB Code Using the MATLAB Runtime
	MATLAB Runtime


	Compiler Commands
	Compiler Tips
	Deploying Applications That Call the Java Native Libraries
	Using the VER Function in a Compiled MATLAB Application


	Standalone Applications
	Deploying Standalone Applications
	Compiling the Application
	Testing the Application
	Deploying the Application
	Running the Application


	Troubleshooting
	Testing Failures
	Investigate Deployed Application Failures

	Limitations and Restrictions
	Limitations
	Packaging MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Finding Missing Functions in a MATLAB File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No MATLAB File Help for Packaged Functions
	No MATLAB Runtime Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged Mode
	Packaging a Function with which Does Not Search Current Working Folder
	Restrictions on Using C++ SetData to Dynamically Resize an mwArray
	Accepted File Types for Packaging

	Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

	Package to Docker
	Package MATLAB Standalone Applications into Docker Images
	Prerequisites
	Create Function in MATLAB
	Create Standalone Application
	Package Standalone Application into Docker Image
	Test Docker Image
	Share Docker Image


	Reference Information
	Set MATLAB Runtime Path for Deployment
	Environment Variables and MATLAB Runtime Directories
	Windows
	Linux
	macOS
	Set Path Permanently on UNIX

	MATLAB Compiler Licensing
	Using MATLAB Compiler Licenses for Development

	Deployment Product Terms

	Functions
	%#exclude
	%#function
	applicationCompiler
	compiler.build.Results
	compiler.build.standaloneApplication
	compiler.build.StandaloneApplicationOptions
	compiler.build.standaloneWindowsApplication
	compiler.codetools.deployableSupportPackages
	compiler.package.docker
	compiler.package.DockerOptions
	compiler.package.installer
	compiler.package.InstallerOptions
	ctfroot
	deploytool
	getmcruserdata
	isdeployed
	ismcc
	libraryCompiler
	mcc
	mcrinstaller
	mcrversion
	setmcruserdata
	compiler.runtime.download

	MATLAB Compiler Quick Reference
	mcc Command Arguments Listed Alphabetically
	Packaging Log and Output Folders

	mcc Command Line Arguments Grouped by Task

	Apps
	Application Compiler
	Hadoop Compiler


